MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm11.53 Structured version   Visualization version   Unicode version

Theorem pm11.53 2179
Description: Theorem *11.53 in [WhiteheadRussell] p. 164. See pm11.53v 1906 for a version requiring fewer axioms. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
pm11.53  |-  ( A. x A. y ( ph  ->  ps )  <->  ( E. x ph  ->  A. y ps ) )
Distinct variable groups:    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem pm11.53
StepHypRef Expression
1 19.21v 1868 . . 3  |-  ( A. y ( ph  ->  ps )  <->  ( ph  ->  A. y ps ) )
21albii 1747 . 2  |-  ( A. x A. y ( ph  ->  ps )  <->  A. x
( ph  ->  A. y ps ) )
3 nfv 1843 . . . 4  |-  F/ x ps
43nfal 2153 . . 3  |-  F/ x A. y ps
5419.23 2080 . 2  |-  ( A. x ( ph  ->  A. y ps )  <->  ( E. x ph  ->  A. y ps ) )
62, 5bitri 264 1  |-  ( A. x A. y ( ph  ->  ps )  <->  ( E. x ph  ->  A. y ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-or 385  df-ex 1705  df-nf 1710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator