Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm13.192 Structured version   Visualization version   Unicode version

Theorem pm13.192 38611
Description: Theorem *13.192 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) (Revised by NM, 4-Jan-2017.)
Assertion
Ref Expression
pm13.192  |-  ( E. y ( A. x
( x  =  A  <-> 
x  =  y )  /\  ph )  <->  [. A  / 
y ]. ph )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem pm13.192
StepHypRef Expression
1 biimpr 210 . . . . . . 7  |-  ( ( x  =  A  <->  x  =  y )  ->  (
x  =  y  ->  x  =  A )
)
21alimi 1739 . . . . . 6  |-  ( A. x ( x  =  A  <->  x  =  y
)  ->  A. x
( x  =  y  ->  x  =  A ) )
3 eqeq1 2626 . . . . . . 7  |-  ( x  =  y  ->  (
x  =  A  <->  y  =  A ) )
43equsalvw 1931 . . . . . 6  |-  ( A. x ( x  =  y  ->  x  =  A )  <->  y  =  A )
52, 4sylib 208 . . . . 5  |-  ( A. x ( x  =  A  <->  x  =  y
)  ->  y  =  A )
6 eqeq2 2633 . . . . . . 7  |-  ( A  =  y  ->  (
x  =  A  <->  x  =  y ) )
76eqcoms 2630 . . . . . 6  |-  ( y  =  A  ->  (
x  =  A  <->  x  =  y ) )
87alrimiv 1855 . . . . 5  |-  ( y  =  A  ->  A. x
( x  =  A  <-> 
x  =  y ) )
95, 8impbii 199 . . . 4  |-  ( A. x ( x  =  A  <->  x  =  y
)  <->  y  =  A )
109anbi1i 731 . . 3  |-  ( ( A. x ( x  =  A  <->  x  =  y )  /\  ph ) 
<->  ( y  =  A  /\  ph ) )
1110exbii 1774 . 2  |-  ( E. y ( A. x
( x  =  A  <-> 
x  =  y )  /\  ph )  <->  E. y
( y  =  A  /\  ph ) )
12 sbc5 3460 . 2  |-  ( [. A  /  y ]. ph  <->  E. y
( y  =  A  /\  ph ) )
1311, 12bitr4i 267 1  |-  ( E. y ( A. x
( x  =  A  <-> 
x  =  y )  /\  ph )  <->  [. A  / 
y ]. ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704   [.wsbc 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202  df-sbc 3436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator