Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pm13.192 Structured version   Visualization version   GIF version

Theorem pm13.192 38611
Description: Theorem *13.192 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) (Revised by NM, 4-Jan-2017.)
Assertion
Ref Expression
pm13.192 (∃𝑦(∀𝑥(𝑥 = 𝐴𝑥 = 𝑦) ∧ 𝜑) ↔ [𝐴 / 𝑦]𝜑)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem pm13.192
StepHypRef Expression
1 biimpr 210 . . . . . . 7 ((𝑥 = 𝐴𝑥 = 𝑦) → (𝑥 = 𝑦𝑥 = 𝐴))
21alimi 1739 . . . . . 6 (∀𝑥(𝑥 = 𝐴𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦𝑥 = 𝐴))
3 eqeq1 2626 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
43equsalvw 1931 . . . . . 6 (∀𝑥(𝑥 = 𝑦𝑥 = 𝐴) ↔ 𝑦 = 𝐴)
52, 4sylib 208 . . . . 5 (∀𝑥(𝑥 = 𝐴𝑥 = 𝑦) → 𝑦 = 𝐴)
6 eqeq2 2633 . . . . . . 7 (𝐴 = 𝑦 → (𝑥 = 𝐴𝑥 = 𝑦))
76eqcoms 2630 . . . . . 6 (𝑦 = 𝐴 → (𝑥 = 𝐴𝑥 = 𝑦))
87alrimiv 1855 . . . . 5 (𝑦 = 𝐴 → ∀𝑥(𝑥 = 𝐴𝑥 = 𝑦))
95, 8impbii 199 . . . 4 (∀𝑥(𝑥 = 𝐴𝑥 = 𝑦) ↔ 𝑦 = 𝐴)
109anbi1i 731 . . 3 ((∀𝑥(𝑥 = 𝐴𝑥 = 𝑦) ∧ 𝜑) ↔ (𝑦 = 𝐴𝜑))
1110exbii 1774 . 2 (∃𝑦(∀𝑥(𝑥 = 𝐴𝑥 = 𝑦) ∧ 𝜑) ↔ ∃𝑦(𝑦 = 𝐴𝜑))
12 sbc5 3460 . 2 ([𝐴 / 𝑦]𝜑 ↔ ∃𝑦(𝑦 = 𝐴𝜑))
1311, 12bitr4i 267 1 (∃𝑦(∀𝑥(𝑥 = 𝐴𝑥 = 𝑦) ∧ 𝜑) ↔ [𝐴 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481   = wceq 1483  wex 1704  [wsbc 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202  df-sbc 3436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator