MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm3.2an3 Structured version   Visualization version   Unicode version

Theorem pm3.2an3 1240
Description: Version of pm3.2 463 for a triple conjunction. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by Kyle Wyonch, 24-Apr-2021.)
Assertion
Ref Expression
pm3.2an3  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( ph  /\  ps  /\  ch ) ) ) )

Proof of Theorem pm3.2an3
StepHypRef Expression
1 df-3an 1039 . . 3  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  ch )
)
21biimpri 218 . 2  |-  ( ( ( ph  /\  ps )  /\  ch )  -> 
( ph  /\  ps  /\  ch ) )
32exp31 630 1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( ph  /\  ps  /\  ch ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1039
This theorem is referenced by:  3exp  1264  tratrb  38746  19.21a3con13vVD  39087  tratrbVD  39097
  Copyright terms: Public domain W3C validator