| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tratrbVD | Structured version Visualization version Unicode version | ||
Description: Virtual deduction proof of tratrb 38746. The following user's proof is
completed by invoking mmj2's unify command and using mmj2's StepSelector
to pick all remaining steps of the Metamath proof.
|
| Ref | Expression |
|---|---|
| tratrbVD |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbra1 2942 |
. . . . 5
| |
| 2 | alrim3con13v 38743 |
. . . . 5
| |
| 3 | 1, 2 | e0a 38999 |
. . . 4
|
| 4 | ax-5 1839 |
. . . . . . 7
| |
| 5 | hbra1 2942 |
. . . . . . 7
| |
| 6 | 4, 5 | hbral 2943 |
. . . . . 6
|
| 7 | alrim3con13v 38743 |
. . . . . 6
| |
| 8 | 6, 7 | e0a 38999 |
. . . . 5
|
| 9 | idn2 38838 |
. . . . . . . . . . 11
| |
| 10 | simpl 473 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | e2 38856 |
. . . . . . . . . 10
|
| 12 | simpr 477 |
. . . . . . . . . . 11
| |
| 13 | 9, 12 | e2 38856 |
. . . . . . . . . 10
|
| 14 | idn3 38840 |
. . . . . . . . . 10
| |
| 15 | pm3.2an3 1240 |
. . . . . . . . . 10
| |
| 16 | 11, 13, 14, 15 | e223 38860 |
. . . . . . . . 9
|
| 17 | 16 | in3 38834 |
. . . . . . . 8
|
| 18 | en3lp 8513 |
. . . . . . . 8
| |
| 19 | con3 149 |
. . . . . . . 8
| |
| 20 | 17, 18, 19 | e20 38954 |
. . . . . . 7
|
| 21 | idn3 38840 |
. . . . . . . . . . 11
| |
| 22 | eleq2 2690 |
. . . . . . . . . . . 12
| |
| 23 | 22 | biimprcd 240 |
. . . . . . . . . . 11
|
| 24 | 13, 21, 23 | e23 38982 |
. . . . . . . . . 10
|
| 25 | pm3.2 463 |
. . . . . . . . . 10
| |
| 26 | 11, 24, 25 | e23 38982 |
. . . . . . . . 9
|
| 27 | 26 | in3 38834 |
. . . . . . . 8
|
| 28 | en2lp 8510 |
. . . . . . . 8
| |
| 29 | con3 149 |
. . . . . . . 8
| |
| 30 | 27, 28, 29 | e20 38954 |
. . . . . . 7
|
| 31 | idn1 38790 |
. . . . . . . . 9
| |
| 32 | simp3 1063 |
. . . . . . . . 9
| |
| 33 | 31, 32 | e1a 38852 |
. . . . . . . 8
|
| 34 | simp2 1062 |
. . . . . . . . . . . 12
| |
| 35 | 31, 34 | e1a 38852 |
. . . . . . . . . . 11
|
| 36 | ralcom2 3104 |
. . . . . . . . . . 11
| |
| 37 | 35, 36 | e1a 38852 |
. . . . . . . . . 10
|
| 38 | simp1 1061 |
. . . . . . . . . . . 12
| |
| 39 | 31, 38 | e1a 38852 |
. . . . . . . . . . 11
|
| 40 | trel 4759 |
. . . . . . . . . . . . 13
| |
| 41 | 40 | expd 452 |
. . . . . . . . . . . 12
|
| 42 | 39, 13, 33, 41 | e121 38881 |
. . . . . . . . . . 11
|
| 43 | trel 4759 |
. . . . . . . . . . . 12
| |
| 44 | 43 | expd 452 |
. . . . . . . . . . 11
|
| 45 | 39, 11, 42, 44 | e122 38878 |
. . . . . . . . . 10
|
| 46 | rspsbc2 38744 |
. . . . . . . . . . 11
| |
| 47 | 46 | com13 88 |
. . . . . . . . . 10
|
| 48 | 37, 45, 33, 47 | e121 38881 |
. . . . . . . . 9
|
| 49 | equid 1939 |
. . . . . . . . . . 11
| |
| 50 | sbceq2a 3447 |
. . . . . . . . . . 11
| |
| 51 | 49, 50 | ax-mp 5 |
. . . . . . . . . 10
|
| 52 | 51 | biimpi 206 |
. . . . . . . . 9
|
| 53 | 48, 52 | e2 38856 |
. . . . . . . 8
|
| 54 | sbcoreleleq 38745 |
. . . . . . . . 9
| |
| 55 | 54 | biimpd 219 |
. . . . . . . 8
|
| 56 | 33, 53, 55 | e12 38951 |
. . . . . . 7
|
| 57 | 3ornot23 38715 |
. . . . . . . 8
| |
| 58 | 57 | ex 450 |
. . . . . . 7
|
| 59 | 20, 30, 56, 58 | e222 38861 |
. . . . . 6
|
| 60 | 59 | in2 38830 |
. . . . 5
|
| 61 | 8, 60 | gen11nv 38842 |
. . . 4
|
| 62 | 3, 61 | gen11nv 38842 |
. . 3
|
| 63 | dftr2 4754 |
. . . 4
| |
| 64 | 63 | biimpri 218 |
. . 3
|
| 65 | 62, 64 | e1a 38852 |
. 2
|
| 66 | 65 | in1 38787 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 ax-reg 8497 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-fr 5073 df-vd1 38786 df-vd2 38794 df-vd3 38806 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |