MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predasetex Structured version   Visualization version   Unicode version

Theorem predasetex 5695
Description: The predecessor class exists when  A does. (Contributed by Scott Fenton, 8-Feb-2011.)
Hypothesis
Ref Expression
predasetex.1  |-  A  e. 
_V
Assertion
Ref Expression
predasetex  |-  Pred ( R ,  A ,  X )  e.  _V

Proof of Theorem predasetex
StepHypRef Expression
1 df-pred 5680 . 2  |-  Pred ( R ,  A ,  X )  =  ( A  i^i  ( `' R " { X } ) )
2 predasetex.1 . . 3  |-  A  e. 
_V
32inex1 4799 . 2  |-  ( A  i^i  ( `' R " { X } ) )  e.  _V
41, 3eqeltri 2697 1  |-  Pred ( R ,  A ,  X )  e.  _V
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1990   _Vcvv 3200    i^i cin 3573   {csn 4177   `'ccnv 5113   "cima 5117   Predcpred 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-pred 5680
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator