MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preqr1OLD Structured version   Visualization version   Unicode version

Theorem preqr1OLD 4380
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995.) Obsolete version of preqr1 4379 as of 18-Dec-2020. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
preqr1.a  |-  A  e. 
_V
preqr1.b  |-  B  e. 
_V
Assertion
Ref Expression
preqr1OLD  |-  ( { A ,  C }  =  { B ,  C }  ->  A  =  B )

Proof of Theorem preqr1OLD
StepHypRef Expression
1 preqr1.a . . . . 5  |-  A  e. 
_V
21prid1 4297 . . . 4  |-  A  e. 
{ A ,  C }
3 eleq2 2690 . . . 4  |-  ( { A ,  C }  =  { B ,  C }  ->  ( A  e. 
{ A ,  C } 
<->  A  e.  { B ,  C } ) )
42, 3mpbii 223 . . 3  |-  ( { A ,  C }  =  { B ,  C }  ->  A  e.  { B ,  C }
)
51elpr 4198 . . 3  |-  ( A  e.  { B ,  C }  <->  ( A  =  B  \/  A  =  C ) )
64, 5sylib 208 . 2  |-  ( { A ,  C }  =  { B ,  C }  ->  ( A  =  B  \/  A  =  C ) )
7 preqr1.b . . . . 5  |-  B  e. 
_V
87prid1 4297 . . . 4  |-  B  e. 
{ B ,  C }
9 eleq2 2690 . . . 4  |-  ( { A ,  C }  =  { B ,  C }  ->  ( B  e. 
{ A ,  C } 
<->  B  e.  { B ,  C } ) )
108, 9mpbiri 248 . . 3  |-  ( { A ,  C }  =  { B ,  C }  ->  B  e.  { A ,  C }
)
117elpr 4198 . . 3  |-  ( B  e.  { A ,  C }  <->  ( B  =  A  \/  B  =  C ) )
1210, 11sylib 208 . 2  |-  ( { A ,  C }  =  { B ,  C }  ->  ( B  =  A  \/  B  =  C ) )
13 eqcom 2629 . 2  |-  ( A  =  B  <->  B  =  A )
14 eqeq2 2633 . 2  |-  ( A  =  C  ->  ( B  =  A  <->  B  =  C ) )
156, 12, 13, 14oplem1 1007 1  |-  ( { A ,  C }  =  { B ,  C }  ->  A  =  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    = wceq 1483    e. wcel 1990   _Vcvv 3200   {cpr 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-sn 4178  df-pr 4180
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator