| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preqr1OLD | Structured version Visualization version Unicode version | ||
| Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995.) Obsolete version of preqr1 4379 as of 18-Dec-2020. (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| preqr1.a |
|
| preqr1.b |
|
| Ref | Expression |
|---|---|
| preqr1OLD |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preqr1.a |
. . . . 5
| |
| 2 | 1 | prid1 4297 |
. . . 4
|
| 3 | eleq2 2690 |
. . . 4
| |
| 4 | 2, 3 | mpbii 223 |
. . 3
|
| 5 | 1 | elpr 4198 |
. . 3
|
| 6 | 4, 5 | sylib 208 |
. 2
|
| 7 | preqr1.b |
. . . . 5
| |
| 8 | 7 | prid1 4297 |
. . . 4
|
| 9 | eleq2 2690 |
. . . 4
| |
| 10 | 8, 9 | mpbiri 248 |
. . 3
|
| 11 | 7 | elpr 4198 |
. . 3
|
| 12 | 10, 11 | sylib 208 |
. 2
|
| 13 | eqcom 2629 |
. 2
| |
| 14 | eqeq2 2633 |
. 2
| |
| 15 | 6, 12, 13, 14 | oplem1 1007 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |