MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwpwab Structured version   Visualization version   Unicode version

Theorem pwpwab 4614
Description: The double power class written as a class abstraction: the class of sets whose union is included in the given class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
pwpwab  |-  ~P ~P A  =  { x  |  U. x  C_  A }
Distinct variable group:    x, A

Proof of Theorem pwpwab
StepHypRef Expression
1 vex 3203 . . 3  |-  x  e. 
_V
2 elpwpw 4613 . . 3  |-  ( x  e.  ~P ~P A  <->  ( x  e.  _V  /\  U. x  C_  A )
)
31, 2mpbiran 953 . 2  |-  ( x  e.  ~P ~P A  <->  U. x  C_  A )
43abbi2i 2738 1  |-  ~P ~P A  =  { x  |  U. x  C_  A }
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990   {cab 2608   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   U.cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437
This theorem is referenced by:  pwpwssunieq  4615
  Copyright terms: Public domain W3C validator