MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabsneu Structured version   Visualization version   Unicode version

Theorem rabsneu 4264
Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.) (Revised by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
rabsneu  |-  ( ( A  e.  V  /\  { x  e.  B  |  ph }  =  { A } )  ->  E! x  e.  B  ph )

Proof of Theorem rabsneu
StepHypRef Expression
1 df-rab 2921 . . . 4  |-  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) }
21eqeq1i 2627 . . 3  |-  ( { x  e.  B  |  ph }  =  { A } 
<->  { x  |  ( x  e.  B  /\  ph ) }  =  { A } )
3 absneu 4263 . . 3  |-  ( ( A  e.  V  /\  { x  |  ( x  e.  B  /\  ph ) }  =  { A } )  ->  E! x ( x  e.  B  /\  ph )
)
42, 3sylan2b 492 . 2  |-  ( ( A  e.  V  /\  { x  e.  B  |  ph }  =  { A } )  ->  E! x ( x  e.  B  /\  ph )
)
5 df-reu 2919 . 2  |-  ( E! x  e.  B  ph  <->  E! x ( x  e.  B  /\  ph )
)
64, 5sylibr 224 1  |-  ( ( A  e.  V  /\  { x  e.  B  |  ph }  =  { A } )  ->  E! x  e.  B  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   E!weu 2470   {cab 2608   E!wreu 2914   {crab 2916   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-reu 2919  df-rab 2921  df-v 3202  df-sn 4178
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator