| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reean | Structured version Visualization version Unicode version | ||
| Description: Rearrange restricted existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Proof shortened by Andrew Salmon, 30-May-2011.) |
| Ref | Expression |
|---|---|
| reean.1 |
|
| reean.2 |
|
| Ref | Expression |
|---|---|
| reean |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an4 865 |
. . . 4
| |
| 2 | 1 | 2exbii 1775 |
. . 3
|
| 3 | nfv 1843 |
. . . . 5
| |
| 4 | reean.1 |
. . . . 5
| |
| 5 | 3, 4 | nfan 1828 |
. . . 4
|
| 6 | nfv 1843 |
. . . . 5
| |
| 7 | reean.2 |
. . . . 5
| |
| 8 | 6, 7 | nfan 1828 |
. . . 4
|
| 9 | 5, 8 | eean 2181 |
. . 3
|
| 10 | 2, 9 | bitri 264 |
. 2
|
| 11 | r2ex 3061 |
. 2
| |
| 12 | df-rex 2918 |
. . 3
| |
| 13 | df-rex 2918 |
. . 3
| |
| 14 | 12, 13 | anbi12i 733 |
. 2
|
| 15 | 10, 11, 14 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-ral 2917 df-rex 2918 |
| This theorem is referenced by: reeanv 3107 disjrnmpt2 39375 |
| Copyright terms: Public domain | W3C validator |