| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqbid | Structured version Visualization version Unicode version | ||
| Description: Equality deduction for restricted existential quantifier. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
| Ref | Expression |
|---|---|
| raleqbid.0 |
|
| raleqbid.1 |
|
| raleqbid.2 |
|
| raleqbid.3 |
|
| raleqbid.4 |
|
| Ref | Expression |
|---|---|
| rexeqbid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbid.3 |
. . 3
| |
| 2 | raleqbid.1 |
. . . 4
| |
| 3 | raleqbid.2 |
. . . 4
| |
| 4 | 2, 3 | rexeqf 3135 |
. . 3
|
| 5 | 1, 4 | syl 17 |
. 2
|
| 6 | raleqbid.0 |
. . 3
| |
| 7 | raleqbid.4 |
. . 3
| |
| 8 | 6, 7 | rexbid 3051 |
. 2
|
| 9 | 5, 8 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 |
| This theorem is referenced by: iuneq12df 4544 |
| Copyright terms: Public domain | W3C validator |