| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexeqf | Structured version Visualization version Unicode version | ||
| Description: Equality theorem for restricted existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 9-Oct-2003.) (Revised by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| raleq1f.1 |
|
| raleq1f.2 |
|
| Ref | Expression |
|---|---|
| rexeqf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1f.1 |
. . . 4
| |
| 2 | raleq1f.2 |
. . . 4
| |
| 3 | 1, 2 | nfeq 2776 |
. . 3
|
| 4 | eleq2 2690 |
. . . 4
| |
| 5 | 4 | anbi1d 741 |
. . 3
|
| 6 | 3, 5 | exbid 2091 |
. 2
|
| 7 | df-rex 2918 |
. 2
| |
| 8 | df-rex 2918 |
. 2
| |
| 9 | 6, 7, 8 | 3bitr4g 303 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 |
| This theorem is referenced by: rexeq 3139 rexeqbid 3151 zfrep6 7134 iuneq12daf 29373 indexa 33528 |
| Copyright terms: Public domain | W3C validator |