| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rexlim2d | Structured version Visualization version Unicode version | ||
| Description: Inference removing two restricted quantifiers. Same as rexlimdvv 3037, but with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| rexlim2d.x |
|
| rexlim2d.y |
|
| rexlim2d.3 |
|
| Ref | Expression |
|---|---|
| rexlim2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlim2d.x |
. 2
| |
| 2 | nfv 1843 |
. 2
| |
| 3 | rexlim2d.y |
. . . . 5
| |
| 4 | nfv 1843 |
. . . . 5
| |
| 5 | 3, 4 | nfan 1828 |
. . . 4
|
| 6 | nfv 1843 |
. . . 4
| |
| 7 | rexlim2d.3 |
. . . . 5
| |
| 8 | 7 | expdimp 453 |
. . . 4
|
| 9 | 5, 6, 8 | rexlimd 3026 |
. . 3
|
| 10 | 9 | ex 450 |
. 2
|
| 11 | 1, 2, 10 | rexlimd 3026 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-ral 2917 df-rex 2918 |
| This theorem is referenced by: fourierdlem48 40371 |
| Copyright terms: Public domain | W3C validator |