Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constlimc Structured version   Visualization version   Unicode version

Theorem constlimc 39856
Description: Limit of constant function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
constlimc.f  |-  F  =  ( x  e.  A  |->  B )
constlimc.a  |-  ( ph  ->  A  C_  CC )
constlimc.b  |-  ( ph  ->  B  e.  CC )
constlimc.c  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
constlimc  |-  ( ph  ->  B  e.  ( F lim
CC  C ) )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hints:    C( x)    F( x)

Proof of Theorem constlimc
Dummy variables  v  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 constlimc.b . 2  |-  ( ph  ->  B  e.  CC )
2 1rp 11836 . . . . 5  |-  1  e.  RR+
32a1i 11 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  1  e.  RR+ )
4 simpr 477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  A )  ->  v  e.  A )
5 vex 3203 . . . . . . . . . . . . . . . 16  |-  v  e. 
_V
6 nfcv 2764 . . . . . . . . . . . . . . . 16  |-  F/_ x B
7 csbtt 3544 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  _V  /\  F/_ x B )  ->  [_ v  /  x ]_ B  =  B
)
85, 6, 7mp2an 708 . . . . . . . . . . . . . . 15  |-  [_ v  /  x ]_ B  =  B
98, 1syl5eqel 2705 . . . . . . . . . . . . . 14  |-  ( ph  ->  [_ v  /  x ]_ B  e.  CC )
109adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  A )  ->  [_ v  /  x ]_ B  e.  CC )
11 constlimc.f . . . . . . . . . . . . . 14  |-  F  =  ( x  e.  A  |->  B )
1211fvmpts 6285 . . . . . . . . . . . . 13  |-  ( ( v  e.  A  /\  [_ v  /  x ]_ B  e.  CC )  ->  ( F `  v
)  =  [_ v  /  x ]_ B )
134, 10, 12syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  A )  ->  ( F `  v )  =  [_ v  /  x ]_ B )
1413oveq1d 6665 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  A )  ->  (
( F `  v
)  -  B )  =  ( [_ v  /  x ]_ B  -  B ) )
158oveq1i 6660 . . . . . . . . . . 11  |-  ( [_ v  /  x ]_ B  -  B )  =  ( B  -  B )
1614, 15syl6eq 2672 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  A )  ->  (
( F `  v
)  -  B )  =  ( B  -  B ) )
1716fveq2d 6195 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  A )  ->  ( abs `  ( ( F `
 v )  -  B ) )  =  ( abs `  ( B  -  B )
) )
181subidd 10380 . . . . . . . . . . 11  |-  ( ph  ->  ( B  -  B
)  =  0 )
1918fveq2d 6195 . . . . . . . . . 10  |-  ( ph  ->  ( abs `  ( B  -  B )
)  =  ( abs `  0 ) )
2019adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  A )  ->  ( abs `  ( B  -  B ) )  =  ( abs `  0
) )
21 abs0 14025 . . . . . . . . . 10  |-  ( abs `  0 )  =  0
2221a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  A )  ->  ( abs `  0 )  =  0 )
2317, 20, 223eqtrd 2660 . . . . . . . 8  |-  ( (
ph  /\  v  e.  A )  ->  ( abs `  ( ( F `
 v )  -  B ) )  =  0 )
2423adantlr 751 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  v  e.  A )  ->  ( abs `  ( ( F `
 v )  -  B ) )  =  0 )
25 rpgt0 11844 . . . . . . . 8  |-  ( y  e.  RR+  ->  0  < 
y )
2625ad2antlr 763 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  v  e.  A )  ->  0  <  y )
2724, 26eqbrtrd 4675 . . . . . 6  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  v  e.  A )  ->  ( abs `  ( ( F `
 v )  -  B ) )  < 
y )
2827a1d 25 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR+ )  /\  v  e.  A )  ->  (
( v  =/=  C  /\  ( abs `  (
v  -  C ) )  <  1 )  ->  ( abs `  (
( F `  v
)  -  B ) )  <  y ) )
2928ralrimiva 2966 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  A. v  e.  A  ( (
v  =/=  C  /\  ( abs `  ( v  -  C ) )  <  1 )  -> 
( abs `  (
( F `  v
)  -  B ) )  <  y ) )
30 breq2 4657 . . . . . . . 8  |-  ( w  =  1  ->  (
( abs `  (
v  -  C ) )  <  w  <->  ( abs `  ( v  -  C
) )  <  1
) )
3130anbi2d 740 . . . . . . 7  |-  ( w  =  1  ->  (
( v  =/=  C  /\  ( abs `  (
v  -  C ) )  <  w )  <-> 
( v  =/=  C  /\  ( abs `  (
v  -  C ) )  <  1 ) ) )
3231imbi1d 331 . . . . . 6  |-  ( w  =  1  ->  (
( ( v  =/= 
C  /\  ( abs `  ( v  -  C
) )  <  w
)  ->  ( abs `  ( ( F `  v )  -  B
) )  <  y
)  <->  ( ( v  =/=  C  /\  ( abs `  ( v  -  C ) )  <  1 )  ->  ( abs `  ( ( F `
 v )  -  B ) )  < 
y ) ) )
3332ralbidv 2986 . . . . 5  |-  ( w  =  1  ->  ( A. v  e.  A  ( ( v  =/= 
C  /\  ( abs `  ( v  -  C
) )  <  w
)  ->  ( abs `  ( ( F `  v )  -  B
) )  <  y
)  <->  A. v  e.  A  ( ( v  =/= 
C  /\  ( abs `  ( v  -  C
) )  <  1
)  ->  ( abs `  ( ( F `  v )  -  B
) )  <  y
) ) )
3433rspcev 3309 . . . 4  |-  ( ( 1  e.  RR+  /\  A. v  e.  A  (
( v  =/=  C  /\  ( abs `  (
v  -  C ) )  <  1 )  ->  ( abs `  (
( F `  v
)  -  B ) )  <  y ) )  ->  E. w  e.  RR+  A. v  e.  A  ( ( v  =/=  C  /\  ( abs `  ( v  -  C ) )  < 
w )  ->  ( abs `  ( ( F `
 v )  -  B ) )  < 
y ) )
353, 29, 34syl2anc 693 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. w  e.  RR+  A. v  e.  A  ( ( v  =/=  C  /\  ( abs `  ( v  -  C ) )  < 
w )  ->  ( abs `  ( ( F `
 v )  -  B ) )  < 
y ) )
3635ralrimiva 2966 . 2  |-  ( ph  ->  A. y  e.  RR+  E. w  e.  RR+  A. v  e.  A  ( (
v  =/=  C  /\  ( abs `  ( v  -  C ) )  <  w )  -> 
( abs `  (
( F `  v
)  -  B ) )  <  y ) )
371adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  CC )
3837, 11fmptd 6385 . . 3  |-  ( ph  ->  F : A --> CC )
39 constlimc.a . . 3  |-  ( ph  ->  A  C_  CC )
40 constlimc.c . . 3  |-  ( ph  ->  C  e.  CC )
4138, 39, 40ellimc3 23643 . 2  |-  ( ph  ->  ( B  e.  ( F lim CC  C )  <-> 
( B  e.  CC  /\ 
A. y  e.  RR+  E. w  e.  RR+  A. v  e.  A  ( (
v  =/=  C  /\  ( abs `  ( v  -  C ) )  <  w )  -> 
( abs `  (
( F `  v
)  -  B ) )  <  y ) ) ) )
421, 36, 41mpbir2and 957 1  |-  ( ph  ->  B  e.  ( F lim
CC  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   F/_wnfc 2751    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200   [_csb 3533    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    < clt 10074    - cmin 10266   RR+crp 11832   abscabs 13974   lim CC climc 23626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cnp 21032  df-xms 22125  df-ms 22126  df-limc 23630
This theorem is referenced by:  reclimc  39885  fourierdlem53  40376  fourierdlem60  40383  fourierdlem61  40384  fourierdlem73  40396  fourierdlem74  40397  fourierdlem75  40398  fourierdlem76  40399  fouriersw  40448
  Copyright terms: Public domain W3C validator