| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rexlimddv2 | Structured version Visualization version Unicode version | ||
| Description: Restricted existential elimination rule of natural deduction. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| rexlimddv2.1 |
|
| rexlimddv2.2 |
|
| Ref | Expression |
|---|---|
| rexlimddv2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimddv2.1 |
. 2
| |
| 2 | rexlimddv2.2 |
. . 3
| |
| 3 | 2 | anasss 679 |
. 2
|
| 4 | 1, 3 | rexlimddv 3035 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-ral 2917 df-rex 2918 |
| This theorem is referenced by: climxlim2lem 40071 |
| Copyright terms: Public domain | W3C validator |