MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexsns Structured version   Visualization version   Unicode version

Theorem rexsns 4217
Description: Restricted existential quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015.) (Revised by NM, 22-Aug-2018.)
Assertion
Ref Expression
rexsns  |-  ( E. x  e.  { A } ph  <->  [. A  /  x ]. ph )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem rexsns
StepHypRef Expression
1 velsn 4193 . . . 4  |-  ( x  e.  { A }  <->  x  =  A )
21anbi1i 731 . . 3  |-  ( ( x  e.  { A }  /\  ph )  <->  ( x  =  A  /\  ph )
)
32exbii 1774 . 2  |-  ( E. x ( x  e. 
{ A }  /\  ph )  <->  E. x ( x  =  A  /\  ph ) )
4 df-rex 2918 . 2  |-  ( E. x  e.  { A } ph  <->  E. x ( x  e.  { A }  /\  ph ) )
5 sbc5 3460 . 2  |-  ( [. A  /  x ]. ph  <->  E. x
( x  =  A  /\  ph ) )
63, 4, 53bitr4i 292 1  |-  ( E. x  e.  { A } ph  <->  [. A  /  x ]. ph )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913   [.wsbc 3435   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-v 3202  df-sbc 3436  df-sn 4178
This theorem is referenced by:  rexsng  4219  r19.12sn  4255  iunxsngf  29375  poimirlem25  33434  rexsngf  39220
  Copyright terms: Public domain W3C validator