Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexsngf Structured version   Visualization version   Unicode version

Theorem rexsngf 39220
Description: Restricted existential quantification over a singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
rexsngf.1  |-  F/ x ps
rexsngf.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rexsngf  |-  ( A  e.  V  ->  ( E. x  e.  { A } ph  <->  ps ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)    V( x)

Proof of Theorem rexsngf
StepHypRef Expression
1 rexsns 4217 . 2  |-  ( E. x  e.  { A } ph  <->  [. A  /  x ]. ph )
2 rexsngf.1 . . 3  |-  F/ x ps
3 rexsngf.2 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
42, 3sbciegf 3467 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ps ) )
51, 4syl5bb 272 1  |-  ( A  e.  V  ->  ( E. x  e.  { A } ph  <->  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483   F/wnf 1708    e. wcel 1990   E.wrex 2913   [.wsbc 3435   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-v 3202  df-sbc 3436  df-sn 4178
This theorem is referenced by:  iunxsngf2  39230
  Copyright terms: Public domain W3C validator