| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rmoeqd | Structured version Visualization version Unicode version | ||
| Description: Equality deduction for restricted uniqueness quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| Ref | Expression |
|---|---|
| raleqd.1 |
|
| Ref | Expression |
|---|---|
| rmoeqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmoeq1 3141 |
. 2
| |
| 2 | raleqd.1 |
. . 3
| |
| 3 | 2 | rmobidv 3131 |
. 2
|
| 4 | 1, 3 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-eu 2474 df-mo 2475 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rmo 2920 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |