MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspec2 Structured version   Visualization version   Unicode version

Theorem rspec2 2934
Description: Specialization rule for restricted quantification, with two quantifiers. (Contributed by NM, 20-Nov-1994.)
Hypothesis
Ref Expression
rspec2.1  |-  A. x  e.  A  A. y  e.  B  ph
Assertion
Ref Expression
rspec2  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ph )

Proof of Theorem rspec2
StepHypRef Expression
1 rspec2.1 . . 3  |-  A. x  e.  A  A. y  e.  B  ph
21rspec 2931 . 2  |-  ( x  e.  A  ->  A. y  e.  B  ph )
32r19.21bi 2932 1  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   A.wral 2912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-ral 2917
This theorem is referenced by:  rspec3  2935
  Copyright terms: Public domain W3C validator