| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbc2or | Structured version Visualization version Unicode version | ||
| Description: The disjunction of two
equivalences for class substitution does not
require a class existence hypothesis. This theorem tells us that there
are only 2 possibilities for |
| Ref | Expression |
|---|---|
| sbc2or |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 3438 |
. . . 4
| |
| 2 | eqeq2 2633 |
. . . . . 6
| |
| 3 | 2 | anbi1d 741 |
. . . . 5
|
| 4 | 3 | exbidv 1850 |
. . . 4
|
| 5 | sb5 2430 |
. . . 4
| |
| 6 | 1, 4, 5 | vtoclbg 3267 |
. . 3
|
| 7 | 6 | orcd 407 |
. 2
|
| 8 | pm5.15 933 |
. . 3
| |
| 9 | vex 3203 |
. . . . . . . . . 10
| |
| 10 | eleq1 2689 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | mpbii 223 |
. . . . . . . . 9
|
| 12 | 11 | adantr 481 |
. . . . . . . 8
|
| 13 | 12 | con3i 150 |
. . . . . . 7
|
| 14 | 13 | nexdv 1864 |
. . . . . 6
|
| 15 | 11 | con3i 150 |
. . . . . . . 8
|
| 16 | 15 | pm2.21d 118 |
. . . . . . 7
|
| 17 | 16 | alrimiv 1855 |
. . . . . 6
|
| 18 | 14, 17 | 2thd 255 |
. . . . 5
|
| 19 | 18 | bibi2d 332 |
. . . 4
|
| 20 | 19 | orbi2d 738 |
. . 3
|
| 21 | 8, 20 | mpbii 223 |
. 2
|
| 22 | 7, 21 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 df-sbc 3436 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |