MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb5 Structured version   Visualization version   Unicode version

Theorem sb5 2430
Description: Equivalence for substitution. Similar to Theorem 6.1 of [Quine] p. 40. The implication "to the right" is sb1 1883 and does not require any dv condition. Theorem sb5f 2386 replaces the dv condition with a non-freeness hypothesis. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
sb5  |-  ( [ y  /  x ] ph 
<->  E. x ( x  =  y  /\  ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem sb5
StepHypRef Expression
1 sb6 2429 . 2  |-  ( [ y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  ph )
)
2 sb56 2150 . 2  |-  ( E. x ( x  =  y  /\  ph )  <->  A. x ( x  =  y  ->  ph ) )
31, 2bitr4i 267 1  |-  ( [ y  /  x ] ph 
<->  E. x ( x  =  y  /\  ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481   E.wex 1704   [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710  df-sb 1881
This theorem is referenced by:  2sb5  2443  sb7f  2453  sbelx  2458  sbc2or  3444  sbc5  3460
  Copyright terms: Public domain W3C validator