| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcco2 | Structured version Visualization version Unicode version | ||
| Description: A composition law for
class substitution. Importantly, |
| Ref | Expression |
|---|---|
| sbcco2.1 |
|
| Ref | Expression |
|---|---|
| sbcco2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbsbc 3439 |
. 2
| |
| 2 | nfv 1843 |
. . 3
| |
| 3 | sbcco2.1 |
. . . . 5
| |
| 4 | 3 | equcoms 1947 |
. . . 4
|
| 5 | dfsbcq 3437 |
. . . . 5
| |
| 6 | 5 | bicomd 213 |
. . . 4
|
| 7 | 4, 6 | syl 17 |
. . 3
|
| 8 | 2, 7 | sbie 2408 |
. 2
|
| 9 | 1, 8 | bitr3i 266 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-sbc 3436 |
| This theorem is referenced by: tfinds2 7063 |
| Copyright terms: Public domain | W3C validator |