| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcco2 | Structured version Visualization version GIF version | ||
| Description: A composition law for class substitution. Importantly, 𝑥 may occur free in the class expression substituted for 𝐴. (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| sbcco2.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sbcco2 | ⊢ ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbsbc 3439 | . 2 ⊢ ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑 ↔ [𝑥 / 𝑦][𝐵 / 𝑥]𝜑) | |
| 2 | nfv 1843 | . . 3 ⊢ Ⅎ𝑦[𝐴 / 𝑥]𝜑 | |
| 3 | sbcco2.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 4 | 3 | equcoms 1947 | . . . 4 ⊢ (𝑦 = 𝑥 → 𝐴 = 𝐵) |
| 5 | dfsbcq 3437 | . . . . 5 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) | |
| 6 | 5 | bicomd 213 | . . . 4 ⊢ (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| 7 | 4, 6 | syl 17 | . . 3 ⊢ (𝑦 = 𝑥 → ([𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| 8 | 2, 7 | sbie 2408 | . 2 ⊢ ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) |
| 9 | 1, 8 | bitr3i 266 | 1 ⊢ ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 [wsb 1880 [wsbc 3435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-sbc 3436 |
| This theorem is referenced by: tfinds2 7063 |
| Copyright terms: Public domain | W3C validator |