Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbccom2 Structured version   Visualization version   Unicode version

Theorem sbccom2 33930
Description: Commutative law for double class substitution. (Contributed by Giovanni Mascellani, 31-May-2019.)
Hypothesis
Ref Expression
sbccom2.1  |-  A  e. 
_V
Assertion
Ref Expression
sbccom2  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. [_ A  /  x ]_ B  / 
y ]. [. A  /  x ]. ph )
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)    B( x, y)

Proof of Theorem sbccom2
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sbcco 3458 . . . . . . 7  |-  ( [. B  /  w ]. [. w  /  y ]. ph  <->  [. B  / 
y ]. ph )
21bicomi 214 . . . . . 6  |-  ( [. B  /  y ]. ph  <->  [. B  /  w ]. [. w  / 
y ]. ph )
32sbcbii 3491 . . . . 5  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. A  /  x ]. [. B  /  w ]. [. w  / 
y ]. ph )
4 sbcco 3458 . . . . . 6  |-  ( [. A  /  z ]. [. z  /  x ]. [. B  /  w ]. [. w  /  y ]. ph  <->  [. A  /  x ]. [. B  /  w ]. [. w  / 
y ]. ph )
54bicomi 214 . . . . 5  |-  ( [. A  /  x ]. [. B  /  w ]. [. w  /  y ]. ph  <->  [. A  / 
z ]. [. z  /  x ]. [. B  /  w ]. [. w  / 
y ]. ph )
6 vex 3203 . . . . . . 7  |-  z  e. 
_V
76sbccom2lem 33929 . . . . . 6  |-  ( [. z  /  x ]. [. B  /  w ]. [. w  /  y ]. ph  <->  [. [_ z  /  x ]_ B  /  w ]. [. z  /  x ]. [. w  / 
y ]. ph )
87sbcbii 3491 . . . . 5  |-  ( [. A  /  z ]. [. z  /  x ]. [. B  /  w ]. [. w  /  y ]. ph  <->  [. A  / 
z ]. [. [_ z  /  x ]_ B  /  w ]. [. z  /  x ]. [. w  / 
y ]. ph )
93, 5, 83bitri 286 . . . 4  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. A  / 
z ]. [. [_ z  /  x ]_ B  /  w ]. [. z  /  x ]. [. w  / 
y ]. ph )
10 sbccom2.1 . . . . 5  |-  A  e. 
_V
1110sbccom2lem 33929 . . . 4  |-  ( [. A  /  z ]. [. [_ z  /  x ]_ B  /  w ]. [. z  /  x ]. [. w  / 
y ]. ph  <->  [. [_ A  /  z ]_ [_ z  /  x ]_ B  /  w ]. [. A  / 
z ]. [. z  /  x ]. [. w  / 
y ]. ph )
12 sbcco 3458 . . . . 5  |-  ( [. A  /  z ]. [. z  /  x ]. [. w  /  y ]. ph  <->  [. A  /  x ]. [. w  / 
y ]. ph )
1312sbcbii 3491 . . . 4  |-  ( [. [_ A  /  z ]_ [_ z  /  x ]_ B  /  w ]. [. A  /  z ]. [. z  /  x ]. [. w  /  y ]. ph  <->  [. [_ A  /  z ]_ [_ z  /  x ]_ B  /  w ]. [. A  /  x ]. [. w  / 
y ]. ph )
149, 11, 133bitri 286 . . 3  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. [_ A  /  z ]_ [_ z  /  x ]_ B  /  w ]. [. A  /  x ]. [. w  / 
y ]. ph )
15 csbco 3543 . . . 4  |-  [_ A  /  z ]_ [_ z  /  x ]_ B  = 
[_ A  /  x ]_ B
16 dfsbcq 3437 . . . 4  |-  ( [_ A  /  z ]_ [_ z  /  x ]_ B  = 
[_ A  /  x ]_ B  ->  ( [. [_ A  /  z ]_ [_ z  /  x ]_ B  /  w ]. [. A  /  x ]. [. w  /  y ]. ph  <->  [. [_ A  /  x ]_ B  /  w ]. [. A  /  x ]. [. w  / 
y ]. ph ) )
1715, 16ax-mp 5 . . 3  |-  ( [. [_ A  /  z ]_ [_ z  /  x ]_ B  /  w ]. [. A  /  x ]. [. w  /  y ]. ph  <->  [. [_ A  /  x ]_ B  /  w ]. [. A  /  x ]. [. w  / 
y ]. ph )
1814, 17bitri 264 . 2  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. [_ A  /  x ]_ B  /  w ]. [. A  /  x ]. [. w  / 
y ]. ph )
19 sbccom 3509 . . 3  |-  ( [. A  /  x ]. [. w  /  y ]. ph  <->  [. w  / 
y ]. [. A  /  x ]. ph )
2019sbcbii 3491 . 2  |-  ( [. [_ A  /  x ]_ B  /  w ]. [. A  /  x ]. [. w  /  y ]. ph  <->  [. [_ A  /  x ]_ B  /  w ]. [. w  / 
y ]. [. A  /  x ]. ph )
21 sbcco 3458 . 2  |-  ( [. [_ A  /  x ]_ B  /  w ]. [. w  /  y ]. [. A  /  x ]. ph  <->  [. [_ A  /  x ]_ B  / 
y ]. [. A  /  x ]. ph )
2218, 20, 213bitri 286 1  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. [_ A  /  x ]_ B  / 
y ]. [. A  /  x ]. ph )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    = wceq 1483    e. wcel 1990   _Vcvv 3200   [.wsbc 3435   [_csb 3533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-csb 3534
This theorem is referenced by:  sbccom2f  33931
  Copyright terms: Public domain W3C validator