Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcel1gvOLD Structured version   Visualization version   Unicode version

Theorem sbcel1gvOLD 39094
Description: Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) Obsolete as of 17-Aug-2018. Use sbcel1v 3495 instead. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
sbcel1gvOLD  |-  ( A  e.  V  ->  ( [. A  /  x ]. x  e.  B  <->  A  e.  B ) )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    V( x)

Proof of Theorem sbcel1gvOLD
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 3438 . 2  |-  ( y  =  A  ->  ( [ y  /  x ] x  e.  B  <->  [. A  /  x ]. x  e.  B )
)
2 eleq1 2689 . 2  |-  ( y  =  A  ->  (
y  e.  B  <->  A  e.  B ) )
3 clelsb3 2729 . 2  |-  ( [ y  /  x ]
x  e.  B  <->  y  e.  B )
41, 2, 3vtoclbg 3267 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. x  e.  B  <->  A  e.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   [wsb 1880    e. wcel 1990   [.wsbc 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202  df-sbc 3436
This theorem is referenced by:  sbcoreleleqVD  39095  onfrALTlem4VD  39122
  Copyright terms: Public domain W3C validator