Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbceq1ddi Structured version   Visualization version   Unicode version

Theorem sbceq1ddi 33928
Description: A lemma for eliminating inequality, in inference form. (Contributed by Giovanni Mascellani, 31-May-2019.)
Hypotheses
Ref Expression
sbceq1ddi.1  |-  ( ph  ->  A  =  B )
sbceq1ddi.2  |-  ( ps 
->  th )
sbceq1ddi.3  |-  ( [. A  /  x ]. ch  <->  th )
sbceq1ddi.4  |-  ( [. B  /  x ]. ch  <->  et )
Assertion
Ref Expression
sbceq1ddi  |-  ( (
ph  /\  ps )  ->  et )

Proof of Theorem sbceq1ddi
StepHypRef Expression
1 sbceq1ddi.1 . . . 4  |-  ( ph  ->  A  =  B )
21adantr 481 . . 3  |-  ( (
ph  /\  ps )  ->  A  =  B )
3 sbceq1ddi.2 . . . . 5  |-  ( ps 
->  th )
4 sbceq1ddi.3 . . . . 5  |-  ( [. A  /  x ]. ch  <->  th )
53, 4sylibr 224 . . . 4  |-  ( ps 
->  [. A  /  x ]. ch )
65adantl 482 . . 3  |-  ( (
ph  /\  ps )  ->  [. A  /  x ]. ch )
72, 6sbceq1dd 3441 . 2  |-  ( (
ph  /\  ps )  ->  [. B  /  x ]. ch )
8 sbceq1ddi.4 . 2  |-  ( [. B  /  x ]. ch  <->  et )
97, 8sylib 208 1  |-  ( (
ph  /\  ps )  ->  et )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   [.wsbc 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-cleq 2615  df-clel 2618  df-sbc 3436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator