![]() |
Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > exlimddvfi | Structured version Visualization version Unicode version |
Description: A lemma for eliminating an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 31-May-2019.) |
Ref | Expression |
---|---|
exlimddvfi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
exlimddvfi.2 |
![]() ![]() ![]() ![]() |
exlimddvfi.3 |
![]() ![]() ![]() ![]() |
exlimddvfi.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
exlimddvfi.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
exlimddvfi.6 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
exlimddvfi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimddvfi.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | exlimddvfi.2 |
. . . 4
![]() ![]() ![]() ![]() | |
3 | 2 | sb8e 2425 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | sylib 208 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | exlimddvfi.3 |
. 2
![]() ![]() ![]() ![]() | |
6 | sbsbc 3439 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | exlimddvfi.4 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 6, 7 | bitri 264 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | exlimddvfi.5 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 8, 9 | sylanb 489 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | exlimddvfi.6 |
. 2
![]() ![]() ![]() ![]() | |
12 | 4, 5, 10, 11 | exlimddvf 33926 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-sbc 3436 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |