| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbciegft | Structured version Visualization version Unicode version | ||
| Description: Conversion of implicit substitution to explicit class substitution, using a bound-variable hypothesis instead of distinct variables. (Closed theorem version of sbciegf 3467.) (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| sbciegft |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc5 3460 |
. . 3
| |
| 2 | biimp 205 |
. . . . . . . 8
| |
| 3 | 2 | imim2i 16 |
. . . . . . 7
|
| 4 | 3 | impd 447 |
. . . . . 6
|
| 5 | 4 | alimi 1739 |
. . . . 5
|
| 6 | 19.23t 2079 |
. . . . . 6
| |
| 7 | 6 | biimpa 501 |
. . . . 5
|
| 8 | 5, 7 | sylan2 491 |
. . . 4
|
| 9 | 8 | 3adant1 1079 |
. . 3
|
| 10 | 1, 9 | syl5bi 232 |
. 2
|
| 11 | biimpr 210 |
. . . . . . . 8
| |
| 12 | 11 | imim2i 16 |
. . . . . . 7
|
| 13 | 12 | com23 86 |
. . . . . 6
|
| 14 | 13 | alimi 1739 |
. . . . 5
|
| 15 | 19.21t 2073 |
. . . . . 6
| |
| 16 | 15 | biimpa 501 |
. . . . 5
|
| 17 | 14, 16 | sylan2 491 |
. . . 4
|
| 18 | 17 | 3adant1 1079 |
. . 3
|
| 19 | sbc6g 3461 |
. . . 4
| |
| 20 | 19 | 3ad2ant1 1082 |
. . 3
|
| 21 | 18, 20 | sylibrd 249 |
. 2
|
| 22 | 10, 21 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 df-sbc 3436 |
| This theorem is referenced by: sbciegf 3467 sbciedf 3471 |
| Copyright terms: Public domain | W3C validator |