| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbciedf | Structured version Visualization version Unicode version | ||
| Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| sbcied.1 |
|
| sbcied.2 |
|
| sbciedf.3 |
|
| sbciedf.4 |
|
| Ref | Expression |
|---|---|
| sbciedf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcied.1 |
. 2
| |
| 2 | sbciedf.4 |
. 2
| |
| 3 | sbciedf.3 |
. . 3
| |
| 4 | sbcied.2 |
. . . 4
| |
| 5 | 4 | ex 450 |
. . 3
|
| 6 | 3, 5 | alrimi 2082 |
. 2
|
| 7 | sbciegft 3466 |
. 2
| |
| 8 | 1, 2, 6, 7 | syl3anc 1326 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 df-sbc 3436 |
| This theorem is referenced by: sbcied 3472 sbc2iegf 3504 csbiebt 3553 sbcnestgf 3995 ovmpt2dxf 6786 ovmpt2rdxf 42117 |
| Copyright terms: Public domain | W3C validator |