Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbcni Structured version   Visualization version   Unicode version

Theorem sbcni 33914
Description: Move class substitution inside a negation, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.)
Hypotheses
Ref Expression
sbcni.1  |-  A  e. 
_V
sbcni.2  |-  ( [. A  /  x ]. ph  <->  ps )
Assertion
Ref Expression
sbcni  |-  ( [. A  /  x ].  -.  ph  <->  -. 
ps )

Proof of Theorem sbcni
StepHypRef Expression
1 sbcni.1 . . 3  |-  A  e. 
_V
2 sbcng 3476 . . 3  |-  ( A  e.  _V  ->  ( [. A  /  x ].  -.  ph  <->  -.  [. A  /  x ]. ph ) )
31, 2ax-mp 5 . 2  |-  ( [. A  /  x ].  -.  ph  <->  -. 
[. A  /  x ]. ph )
4 sbcni.2 . 2  |-  ( [. A  /  x ]. ph  <->  ps )
53, 4xchbinx 324 1  |-  ( [. A  /  x ].  -.  ph  <->  -. 
ps )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    e. wcel 1990   _Vcvv 3200   [.wsbc 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202  df-sbc 3436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator