Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbceqi Structured version   Visualization version   Unicode version

Theorem sbceqi 33913
Description: Distribution of class substitution over equality, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.)
Hypotheses
Ref Expression
sbceqi.1  |-  A  e. 
_V
sbceqi.2  |-  [_ A  /  x ]_ B  =  D
sbceqi.3  |-  [_ A  /  x ]_ C  =  E
Assertion
Ref Expression
sbceqi  |-  ( [. A  /  x ]. B  =  C  <->  D  =  E
)

Proof of Theorem sbceqi
StepHypRef Expression
1 sbceqi.1 . . 3  |-  A  e. 
_V
2 sbceqg 3984 . . 3  |-  ( A  e.  _V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) )
31, 2ax-mp 5 . 2  |-  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C )
4 sbceqi.2 . . 3  |-  [_ A  /  x ]_ B  =  D
5 sbceqi.3 . . 3  |-  [_ A  /  x ]_ C  =  E
64, 5eqeq12i 2636 . 2  |-  ( [_ A  /  x ]_ B  =  [_ A  /  x ]_ C  <->  D  =  E
)
73, 6bitri 264 1  |-  ( [. A  /  x ]. B  =  C  <->  D  =  E
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    = wceq 1483    e. wcel 1990   _Vcvv 3200   [.wsbc 3435   [_csb 3533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-csb 3534
This theorem is referenced by:  sbccom2lem  33929
  Copyright terms: Public domain W3C validator