| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcom2 | Structured version Visualization version Unicode version | ||
| Description: Commutativity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 27-May-1997.) (Proof shortened by Wolf Lammen, 24-Sep-2018.) |
| Ref | Expression |
|---|---|
| sbcom2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax6ev 1890 |
. 2
| |
| 2 | ax6ev 1890 |
. 2
| |
| 3 | 2sb6 2444 |
. . . . . . . . . 10
| |
| 4 | alcom 2037 |
. . . . . . . . . 10
| |
| 5 | ancomst 468 |
. . . . . . . . . . 11
| |
| 6 | 5 | 2albii 1748 |
. . . . . . . . . 10
|
| 7 | 3, 4, 6 | 3bitri 286 |
. . . . . . . . 9
|
| 8 | 2sb6 2444 |
. . . . . . . . 9
| |
| 9 | 7, 8 | bitr4i 267 |
. . . . . . . 8
|
| 10 | nfv 1843 |
. . . . . . . . 9
| |
| 11 | sbequ 2376 |
. . . . . . . . 9
| |
| 12 | 10, 11 | sbbid 2403 |
. . . . . . . 8
|
| 13 | 9, 12 | syl5bbr 274 |
. . . . . . 7
|
| 14 | sbequ 2376 |
. . . . . . 7
| |
| 15 | 13, 14 | sylan9bb 736 |
. . . . . 6
|
| 16 | nfv 1843 |
. . . . . . . 8
| |
| 17 | sbequ 2376 |
. . . . . . . 8
| |
| 18 | 16, 17 | sbbid 2403 |
. . . . . . 7
|
| 19 | sbequ 2376 |
. . . . . . 7
| |
| 20 | 18, 19 | sylan9bbr 737 |
. . . . . 6
|
| 21 | 15, 20 | bitr3d 270 |
. . . . 5
|
| 22 | 21 | ex 450 |
. . . 4
|
| 23 | 22 | exlimdv 1861 |
. . 3
|
| 24 | 23 | exlimiv 1858 |
. 2
|
| 25 | 1, 2, 24 | mp2 9 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: sbco4lem 2465 sbco4 2466 2mo 2551 cnvopab 5533 |
| Copyright terms: Public domain | W3C validator |