HomeHome Metamath Proof Explorer
Theorem List (p. 25 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 2401-2500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsbbi 2401 Equivalence inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993.)
 |-  ( [ y  /  x ] ( ph  <->  ps )  <->  ( [ y  /  x ] ph  <->  [ y  /  x ] ps ) )
 
Theoremspsbbi 2402 Specialization of biconditional. (Contributed by NM, 2-Jun-1993.)
 |-  ( A. x (
 ph 
 <->  ps )  ->  ( [ y  /  x ] ph  <->  [ y  /  x ] ps ) )
 
Theoremsbbid 2403 Deduction substituting both sides of a biconditional. (Contributed by NM, 30-Jun-1993.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( [ y  /  x ] ps  <->  [ y  /  x ] ch ) )
 
Theoremsblbis 2404 Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993.)
 |-  ( [ y  /  x ] ph  <->  ps )   =>    |-  ( [ y  /  x ] ( ch  <->  ph )  <->  ( [ y  /  x ] ch  <->  ps ) )
 
Theoremsbrbis 2405 Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.)
 |-  ( [ y  /  x ] ph  <->  ps )   =>    |-  ( [ y  /  x ] ( ph  <->  ch )  <->  ( ps  <->  [ y  /  x ] ch ) )
 
Theoremsbrbif 2406 Introduce right biconditional inside of a substitution. (Contributed by NM, 18-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
 |- 
 F/ x ch   &    |-  ( [ y  /  x ] ph  <->  ps )   =>    |-  ( [ y  /  x ] ( ph  <->  ch )  <->  ( ps  <->  ch ) )
 
Theoremsbequ8ALT 2407 Alternate proof of sbequ8 1885, shorter but requiring more axioms. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( [ y  /  x ] ph  <->  [ y  /  x ] ( x  =  y  ->  ph ) )
 
Theoremsbie 2408 Conversion of implicit substitution to explicit substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 13-Jul-2019.)
 |- 
 F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( [ y  /  x ] ph  <->  ps )
 
Theoremsbied 2409 Conversion of implicit substitution to explicit substitution (deduction version of sbie 2408). (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Jun-2018.)
 |- 
 F/ x ph   &    |-  ( ph  ->  F/ x ch )   &    |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch ) ) )   =>    |-  ( ph  ->  ( [ y  /  x ] ps  <->  ch ) )
 
Theoremsbiedv 2410* Conversion of implicit substitution to explicit substitution (deduction version of sbie 2408). (Contributed by NM, 7-Jan-2017.)
 |-  ( ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( [ y  /  x ] ps  <->  ch ) )
 
Theoremsbcom3 2411 Substituting  y for  x and then  z for  y is equivalent to substituting  z for both  x and  y. (Contributed by Giovanni Mascellani, 8-Apr-2018.) Remove dependency on ax-11 2034. (Revised by Wolf Lammen, 16-Sep-2018.) (Proof shortened by Wolf Lammen, 16-Sep-2018.)
 |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  y ] [ z  /  x ] ph )
 
Theoremsbco 2412 A composition law for substitution. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 21-Sep-2018.)
 |-  ( [ y  /  x ] [ x  /  y ] ph  <->  [ y  /  x ] ph )
 
Theoremsbid2 2413 An identity law for substitution. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 6-Oct-2016.)
 |- 
 F/ x ph   =>    |-  ( [ y  /  x ] [ x  /  y ] ph  <->  ph )
 
Theoremsbidm 2414 An idempotent law for substitution. (Contributed by NM, 30-Jun-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 13-Jul-2019.)
 |-  ( [ y  /  x ] [ y  /  x ] ph  <->  [ y  /  x ] ph )
 
Theoremsbco2 2415 A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Sep-2018.)
 |- 
 F/ z ph   =>    |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
 
Theoremsbco2d 2416 A composition law for substitution. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 6-Oct-2016.)
 |- 
 F/ x ph   &    |-  F/ z ph   &    |-  ( ph  ->  F/ z ps )   =>    |-  ( ph  ->  ( [ y  /  z ] [ z  /  x ] ps  <->  [ y  /  x ] ps ) )
 
Theoremsbco3 2417 A composition law for substitution. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Wolf Lammen, 18-Sep-2018.)
 |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] [ x  /  y ] ph )
 
Theoremsbcom 2418 A commutativity law for substitution. (Contributed by NM, 27-May-1997.) (Proof shortened by Wolf Lammen, 20-Sep-2018.)
 |-  ( [ y  /  z ] [ y  /  x ] ph  <->  [ y  /  x ] [ y  /  z ] ph )
 
Theoremsbt 2419 A substitution into a theorem yields a theorem. (See chvar 2262 and chvarv 2263 for versions using implicit substitution.) (Contributed by NM, 21-Jan-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Jul-2018.)
 |-  ph   =>    |- 
 [ y  /  x ] ph
 
Theoremsbtrt 2420 Partially closed form of sbtr 2421. (Contributed by BJ, 4-Jun-2019.)
 |- 
 F/ y ph   =>    |-  ( A. y [
 y  /  x ] ph  ->  ph )
 
Theoremsbtr 2421 A partial converse to sbt 2419. If the substitution of a variable for a non-free one in a wff gives a theorem, then the original wff is a theorem. (Contributed by BJ, 15-Sep-2018.)
 |- 
 F/ y ph   &    |-  [ y  /  x ] ph   =>    |-  ph
 
Theoremsb5rf 2422 Reversed substitution. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 20-Sep-2018.)
 |- 
 F/ y ph   =>    |-  ( ph  <->  E. y ( y  =  x  /\  [
 y  /  x ] ph ) )
 
Theoremsb6rf 2423 Reversed substitution. (Contributed by NM, 1-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 21-Sep-2018.)
 |- 
 F/ y ph   =>    |-  ( ph  <->  A. y ( y  =  x  ->  [ y  /  x ] ph )
 )
 
Theoremsb8 2424 Substitution of variable in universal quantifier. (Contributed by NM, 16-May-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Jim Kingdon, 15-Jan-2018.)
 |- 
 F/ y ph   =>    |-  ( A. x ph  <->  A. y [ y  /  x ] ph )
 
Theoremsb8e 2425 Substitution of variable in existential quantifier. (Contributed by NM, 12-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Jim Kingdon, 15-Jan-2018.)
 |- 
 F/ y ph   =>    |-  ( E. x ph  <->  E. y [ y  /  x ] ph )
 
Theoremsb9 2426 Commutation of quantification and substitution variables. (Contributed by NM, 5-Aug-1993.) Allow a shortening of sb9i 2427. (Revised by Wolf Lammen, 15-Jun-2019.)
 |-  ( A. x [ x  /  y ] ph  <->  A. y [ y  /  x ] ph )
 
Theoremsb9i 2427 Commutation of quantification and substitution variables. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 15-Jun-2019.)
 |-  ( A. x [ x  /  y ] ph  ->  A. y [ y  /  x ] ph )
 
Theoremax12vALT 2428* Alternate proof of ax12v2 2049, shorter, but depending on more axioms. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( x  =  y 
 ->  ( ph  ->  A. x ( x  =  y  -> 
 ph ) ) )
 
Theoremsb6 2429* Equivalence for substitution. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. The implication "to the left" is sb2 2352 and does not require any dv condition. Theorem sb6f 2385 replaces the dv condition with a non-freeness hypothesis. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 21-Sep-2018.)
 |-  ( [ y  /  x ] ph  <->  A. x ( x  =  y  ->  ph )
 )
 
Theoremsb5 2430* Equivalence for substitution. Similar to Theorem 6.1 of [Quine] p. 40. The implication "to the right" is sb1 1883 and does not require any dv condition. Theorem sb5f 2386 replaces the dv condition with a non-freeness hypothesis. (Contributed by NM, 18-Aug-1993.)
 |-  ( [ y  /  x ] ph  <->  E. x ( x  =  y  /\  ph )
 )
 
Theoremequsb3lem 2431* Lemma for equsb3 2432. (Contributed by Raph Levien and FL, 4-Dec-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
 |-  ( [ x  /  y ] y  =  z  <-> 
 x  =  z )
 
Theoremequsb3 2432* Substitution applied to an atomic wff. (Contributed by Raph Levien and FL, 4-Dec-2005.) Remove dependency on ax-11 2034. (Revised by Wolf Lammen, 21-Sep-2018.)
 |-  ( [ x  /  y ] y  =  z  <-> 
 x  =  z )
 
Theoremequsb3ALT 2433* Alternate proof of equsb3 2432, shorter but requiring ax-11 2034. (Contributed by Raph Levien and FL, 4-Dec-2005.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( [ x  /  y ] y  =  z  <-> 
 x  =  z )
 
Theoremelsb3 2434* Substitution applied to an atomic membership wff. (Contributed by NM, 7-Nov-2006.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
 |-  ( [ x  /  y ] y  e.  z  <->  x  e.  z )
 
Theoremelsb4 2435* Substitution applied to an atomic membership wff. (Contributed by Rodolfo Medina, 3-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
 |-  ( [ x  /  y ] z  e.  y  <->  z  e.  x )
 
Theoremhbs1 2436* The setvar  x is not free in  [ y  /  x ] ph when  x and  y are distinct. (Contributed by NM, 26-May-1993.)
 |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
 
Theoremnfs1v 2437* The setvar  x is not free in  [ y  /  x ] ph when  x and  y are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x [ y  /  x ] ph
 
Theoremsbhb 2438* Two ways of expressing " x is (effectively) not free in  ph." (Contributed by NM, 29-May-2009.)
 |-  ( ( ph  ->  A. x ph )  <->  A. y ( ph  ->  [ y  /  x ] ph ) )
 
Theoremsbnf2 2439* Two ways of expressing " x is (effectively) not free in  ph." (Contributed by Gérard Lang, 14-Nov-2013.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 22-Sep-2018.)
 |-  ( F/ x ph  <->  A. y A. z ( [
 y  /  x ] ph 
 <->  [ z  /  x ] ph ) )
 
Theoremnfsb 2440* If  z is not free in  ph, it is not free in  [ y  /  x ] ph when  y and  z are distinct. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ z ph   =>    |- 
 F/ z [ y  /  x ] ph
 
Theoremhbsb 2441* If  z is not free in  ph, it is not free in  [ y  /  x ] ph when  y and  z are distinct. (Contributed by NM, 12-Aug-1993.)
 |-  ( ph  ->  A. z ph )   =>    |-  ( [ y  /  x ] ph  ->  A. z [ y  /  x ] ph )
 
Theoremnfsbd 2442* Deduction version of nfsb 2440. (Contributed by NM, 15-Feb-2013.)
 |- 
 F/ x ph   &    |-  ( ph  ->  F/ z ps )   =>    |-  ( ph  ->  F/ z [ y  /  x ] ps )
 
Theorem2sb5 2443* Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.)
 |-  ( [ z  /  x ] [ w  /  y ] ph  <->  E. x E. y
 ( ( x  =  z  /\  y  =  w )  /\  ph )
 )
 
Theorem2sb6 2444* Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.)
 |-  ( [ z  /  x ] [ w  /  y ] ph  <->  A. x A. y
 ( ( x  =  z  /\  y  =  w )  ->  ph )
 )
 
Theoremsbcom2 2445* Commutativity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 27-May-1997.) (Proof shortened by Wolf Lammen, 24-Sep-2018.)
 |-  ( [ w  /  z ] [ y  /  x ] ph  <->  [ y  /  x ] [ w  /  z ] ph )
 
Theoremsbcom4 2446* Commutativity law for substitution. This theorem was incorrectly used as our previous version of pm11.07 2447 but may still be useful. (Contributed by Andrew Salmon, 17-Jun-2011.) (Proof shortened by Jim Kingdon, 22-Jan-2018.)
 |-  ( [ w  /  x ] [ y  /  z ] ph  <->  [ y  /  x ] [ w  /  z ] ph )
 
Theorempm11.07 2447 Axiom *11.07 in [WhiteheadRussell] p. 159. The original reads: *11.07 "Whatever possible argument  x may be,  ph ( x ,  y ) is true whatever possible argument  y may be" implies the corresponding statement with  x and  y interchanged except in " ph ( x ,  y )". Under our formalism this appears to correspond to idi 2 and not to sbcom4 2446 as earlier thought. See https://groups.google.com/d/msg/metamath/iS0fOvSemC8/M1zTH8wxCAAJ. (Contributed by BJ, 16-Sep-2018.) (New usage is discouraged.)
 |-  ph   =>    |-  ph
 
Theoremsb6a 2448* Equivalence for substitution. (Contributed by NM, 2-Jun-1993.) (Proof shortened by Wolf Lammen, 23-Sep-2018.)
 |-  ( [ y  /  x ] ph  <->  A. x ( x  =  y  ->  [ x  /  y ] ph )
 )
 
Theorem2ax6elem 2449 We can always find values matching 
x and  y, as long as they are represented by distinct variables. This theorem merges two ax6e 2250 instances  E. z z  =  x and  E. w w  =  y into a common expression. Alan Sare contributed a variant of this theorem with distinct variable conditions before, see ax6e2nd 38774. (Contributed by Wolf Lammen, 27-Sep-2018.)
 |-  ( -.  A. w  w  =  z  ->  E. z E. w ( z  =  x  /\  w  =  y )
 )
 
Theorem2ax6e 2450* We can always find values matching 
x and  y, as long as they are represented by distinct variables. Version of 2ax6elem 2449 with a distinct variable constraint. (Contributed by Wolf Lammen, 28-Sep-2018.)
 |- 
 E. z E. w ( z  =  x  /\  w  =  y
 )
 
Theorem2sb5rf 2451* Reversed double substitution. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) Remove distinct variable constraints. (Revised by Wolf Lammen, 28-Sep-2018.)
 |- 
 F/ z ph   &    |-  F/ w ph   =>    |-  ( ph 
 <-> 
 E. z E. w ( ( z  =  x  /\  w  =  y )  /\  [
 z  /  x ] [ w  /  y ] ph ) )
 
Theorem2sb6rf 2452* Reversed double substitution. (Contributed by NM, 3-Feb-2005.) (Revised by Mario Carneiro, 6-Oct-2016.) Remove variable constraints. (Revised by Wolf Lammen, 28-Sep-2018.)
 |- 
 F/ z ph   &    |-  F/ w ph   =>    |-  ( ph 
 <-> 
 A. z A. w ( ( z  =  x  /\  w  =  y )  ->  [ z  /  x ] [ w  /  y ] ph )
 )
 
Theoremsb7f 2453* This version of dfsb7 2455 does not require that  ph and  z be distinct. This permits it to be used as a definition for substitution in a formalization that omits the logically redundant axiom ax-5 1839 i.e. that doesn't have the concept of a variable not occurring in a wff. (df-sb 1881 is also suitable, but its mixing of free and bound variables is distasteful to some logicians.) (Contributed by NM, 26-Jul-2006.) (Revised by Mario Carneiro, 6-Oct-2016.)
 |- 
 F/ z ph   =>    |-  ( [ y  /  x ] ph  <->  E. z ( z  =  y  /\  E. x ( x  =  z  /\  ph )
 ) )
 
Theoremsb7h 2454* This version of dfsb7 2455 does not require that  ph and  z be distinct. This permits it to be used as a definition for substitution in a formalization that omits the logically redundant axiom ax-5 1839 i.e. that doesn't have the concept of a variable not occurring in a wff. (df-sb 1881 is also suitable, but its mixing of free and bound variables is distasteful to some logicians.) (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( ph  ->  A. z ph )   =>    |-  ( [ y  /  x ] ph  <->  E. z ( z  =  y  /\  E. x ( x  =  z  /\  ph )
 ) )
 
Theoremdfsb7 2455* An alternate definition of proper substitution df-sb 1881. By introducing a dummy variable  z in the definiens, we are able to eliminate any distinct variable restrictions among the variables  x,  y, and  ph of the definiendum. No distinct variable conflicts arise because  z effectively insulates  x from  y. To achieve this, we use a chain of two substitutions in the form of sb5 2430, first  z for  x then  y for  z. Compare Definition 2.1'' of [Quine] p. 17, which is obtained from this theorem by applying df-clab 2609. Theorem sb7h 2454 provides a version where  ph and  z don't have to be distinct. (Contributed by NM, 28-Jan-2004.)
 |-  ( [ y  /  x ] ph  <->  E. z ( z  =  y  /\  E. x ( x  =  z  /\  ph )
 ) )
 
Theoremsb10f 2456* Hao Wang's identity axiom P6 in Irving Copi, Symbolic Logic (5th ed., 1979), p. 328. In traditional predicate calculus, this is a sole axiom for identity from which the usual ones can be derived. (Contributed by NM, 9-May-2005.) (Revised by Mario Carneiro, 6-Oct-2016.)
 |- 
 F/ x ph   =>    |-  ( [ y  /  z ] ph  <->  E. x ( x  =  y  /\  [ x  /  z ] ph ) )
 
Theoremsbid2v 2457* An identity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.)
 |-  ( [ y  /  x ] [ x  /  y ] ph  <->  ph )
 
Theoremsbelx 2458* Elimination of substitution. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  <->  E. x ( x  =  y  /\  [ x  /  y ] ph ) )
 
Theoremsbel2x 2459* Elimination of double substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 29-Sep-2018.)
 |-  ( ph  <->  E. x E. y
 ( ( x  =  z  /\  y  =  w )  /\  [
 y  /  w ] [ x  /  z ] ph ) )
 
Theoremsbal1 2460* A theorem used in elimination of disjoint variable restriction on  x and  y by replacing it with a distinctor  -.  A. x x  =  z. (Contributed by NM, 15-May-1993.) (Proof shortened by Wolf Lammen, 3-Oct-2018.)
 |-  ( -.  A. x  x  =  z  ->  ( [ z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph )
 )
 
Theoremsbal2 2461* Move quantifier in and out of substitution. (Contributed by NM, 2-Jan-2002.) Remove a distinct variable constraint. (Revised by Wolf Lammen, 3-Oct-2018.)
 |-  ( -.  A. x  x  =  y  ->  ( [ z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph )
 )
 
Theoremsbal 2462* Move universal quantifier in and out of substitution. (Contributed by NM, 16-May-1993.) (Proof shortened by Wolf Lammen, 29-Sep-2018.)
 |-  ( [ z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph )
 
Theoremsbex 2463* Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003.)
 |-  ( [ z  /  y ] E. x ph  <->  E. x [ z  /  y ] ph )
 
Theoremsbalv 2464* Quantify with new variable inside substitution. (Contributed by NM, 18-Aug-1993.)
 |-  ( [ y  /  x ] ph  <->  ps )   =>    |-  ( [ y  /  x ] A. z ph  <->  A. z ps )
 
Theoremsbco4lem 2465* Lemma for sbco4 2466. It replaces the temporary variable  v with another temporary variable  w. (Contributed by Jim Kingdon, 26-Sep-2018.)
 |-  ( [ x  /  v ] [ y  /  x ] [ v  /  y ] ph  <->  [ x  /  w ] [ y  /  x ] [ w  /  y ] ph )
 
Theoremsbco4 2466* Two ways of exchanging two variables. Both sides of the biconditional exchange  x and  y, either via two temporary variables  u and  v, or a single temporary  w. (Contributed by Jim Kingdon, 25-Sep-2018.)
 |-  ( [ y  /  u ] [ x  /  v ] [ u  /  x ] [ v  /  y ] ph  <->  [ x  /  w ] [ y  /  x ] [ w  /  y ] ph )
 
Theorem2sb8e 2467* An equivalent expression for double existence. (Contributed by Wolf Lammen, 2-Nov-2019.)
 |-  ( E. x E. y ph  <->  E. z E. w [ z  /  x ] [ w  /  y ] ph )
 
Theoremexsb 2468* An equivalent expression for existence. (Contributed by NM, 2-Feb-2005.)
 |-  ( E. x ph  <->  E. y A. x ( x  =  y  ->  ph )
 )
 
Theorem2exsb 2469* An equivalent expression for double existence. (Contributed by NM, 2-Feb-2005.) (Proof shortened by Wolf Lammen, 30-Sep-2018.)
 |-  ( E. x E. y ph  <->  E. z E. w A. x A. y ( ( x  =  z 
 /\  y  =  w )  ->  ph ) )
 
1.6  Existential uniqueness
 
Syntaxweu 2470 Extend wff definition to include existential uniqueness ("there exists a unique  x such that  ph").
 wff  E! x ph
 
Syntaxwmo 2471 Extend wff definition to include uniqueness ("there exists at most one  x such that  ph").
 wff  E* x ph
 
Theoremeujust 2472* A soundness justification theorem for df-eu 2474, showing that the definition is equivalent to itself with its dummy variable renamed. Note that  y and  z needn't be distinct variables. See eujustALT 2473 for a proof that provides an example of how it can be achieved through the use of dvelim 2337. (Contributed by NM, 11-Mar-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |-  ( E. y A. x ( ph  <->  x  =  y
 ) 
 <-> 
 E. z A. x ( ph  <->  x  =  z
 ) )
 
TheoremeujustALT 2473* Alternate proof of eujust 2472 illustrating the use of dvelim 2337. (Contributed by NM, 11-Mar-2010.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( E. y A. x ( ph  <->  x  =  y
 ) 
 <-> 
 E. z A. x ( ph  <->  x  =  z
 ) )
 
Definitiondf-eu 2474* Define existential uniqueness, i.e. "there exists exactly one  x such that  ph." Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2510, eu2 2509, eu3v 2498, and eu5 2496 (which in some cases we show with a hypothesis  ph 
->  A. y ph in place of a distinct variable condition on 
y and  ph). Double uniqueness is tricky:  E! x E! y ph does not mean "exactly one  x and one  y " (see 2eu4 2556). (Contributed by NM, 12-Aug-1993.)
 |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
 
Definitiondf-mo 2475 Define "there exists at most one  x such that 
ph." Here we define it in terms of existential uniqueness. Notation of [BellMachover] p. 460, whose definition we show as mo3 2507. For other possible definitions see mo2 2479 and mo4 2517. (Contributed by NM, 8-Mar-1995.)
 |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
 
Theoremeuequ1 2476* Equality has existential uniqueness. Special case of eueq1 3379 proved using only predicate calculus. The proof needs  y  =  z be free of  x. This is ensured by having  x and  y be distinct. Alternately, a distinctor 
-.  A. x x  =  y could have been used instead. (Contributed by Stefan Allan, 4-Dec-2008.) (Proof shortened by Wolf Lammen, 8-Sep-2019.)
 |- 
 E! x  x  =  y
 
Theoremmo2v 2477* Alternate definition of "at most one." Unlike mo2 2479, which is slightly more general, it does not depend on ax-11 2034 and ax-13 2246, whence it is preferable within predicate logic. Elsewhere, most theorems depend on these axioms anyway, so this advantage is no longer important. (Contributed by Wolf Lammen, 27-May-2019.) (Proof shortened by Wolf Lammen, 10-Nov-2019.)
 |-  ( E* x ph  <->  E. y A. x ( ph  ->  x  =  y ) )
 
Theoremeuf 2478* A version of the existential uniqueness definition with a hypothesis instead of a distinct variable condition. (Contributed by NM, 12-Aug-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2018.)
 |- 
 F/ y ph   =>    |-  ( E! x ph  <->  E. y A. x ( ph  <->  x  =  y ) )
 
Theoremmo2 2479* Alternate definition of "at most one." (Contributed by NM, 8-Mar-1995.) Restrict dummy variable z. (Revised by Wolf Lammen, 28-May-2019.)
 |- 
 F/ y ph   =>    |-  ( E* x ph  <->  E. y A. x ( ph  ->  x  =  y ) )
 
Theoremnfeu1 2480 Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |- 
 F/ x E! x ph
 
Theoremnfmo1 2481 Bound-variable hypothesis builder for "at most one." (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |- 
 F/ x E* x ph
 
Theoremnfeud2 2482 Bound-variable hypothesis builder for uniqueness. (Contributed by Mario Carneiro, 14-Nov-2016.) (Proof shortened by Wolf Lammen, 4-Oct-2018.)
 |- 
 F/ y ph   &    |-  ( ( ph  /\ 
 -.  A. x  x  =  y )  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x E! y ps )
 
Theoremnfmod2 2483 Bound-variable hypothesis builder for "at most one." (Contributed by Mario Carneiro, 14-Nov-2016.)
 |- 
 F/ y ph   &    |-  ( ( ph  /\ 
 -.  A. x  x  =  y )  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x E* y ps )
 
Theoremnfeud 2484 Deduction version of nfeu 2486. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x E! y ps )
 
Theoremnfmod 2485 Bound-variable hypothesis builder for "at most one." (Contributed by Mario Carneiro, 14-Nov-2016.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x E* y ps )
 
Theoremnfeu 2486 Bound-variable hypothesis builder for uniqueness. Note that  x and  y needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |- 
 F/ x ph   =>    |- 
 F/ x E! y ph
 
Theoremnfmo 2487 Bound-variable hypothesis builder for "at most one." (Contributed by NM, 9-Mar-1995.)
 |- 
 F/ x ph   =>    |- 
 F/ x E* y ph
 
Theoremeubid 2488 Formula-building rule for uniqueness quantifier (deduction rule). (Contributed by NM, 9-Jul-1994.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E! x ps  <->  E! x ch )
 )
 
Theoremmobid 2489 Formula-building rule for "at most one" quantifier (deduction rule). (Contributed by NM, 8-Mar-1995.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( E* x ps  <->  E* x ch )
 )
 
Theoremeubidv 2490* Formula-building rule for uniqueness quantifier (deduction rule). (Contributed by NM, 9-Jul-1994.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E! x ps  <->  E! x ch )
 )
 
Theoremmobidv 2491* Formula-building rule for "at most one" quantifier (deduction rule). (Contributed by Mario Carneiro, 7-Oct-2016.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E* x ps  <->  E* x ch )
 )
 
Theoremeubii 2492 Introduce uniqueness quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
 |-  ( ph  <->  ps )   =>    |-  ( E! x ph  <->  E! x ps )
 
Theoremmobii 2493 Formula-building rule for "at most one" quantifier (inference rule). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.)
 |-  ( ps  <->  ch )   =>    |-  ( E* x ps  <->  E* x ch )
 
Theoremeuex 2494 Existential uniqueness implies existence. For a shorter proof using more axioms, see euexALT 2511. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2018.)
 |-  ( E! x ph  ->  E. x ph )
 
Theoremexmo 2495 Something exists or at most one exists. (Contributed by NM, 8-Mar-1995.)
 |-  ( E. x ph  \/  E* x ph )
 
Theoremeu5 2496 Uniqueness in terms of "at most one." Revised to reduce dependencies on axioms. (Contributed by NM, 23-Mar-1995.) (Proof shortened by Wolf Lammen, 25-May-2019.)
 |-  ( E! x ph  <->  ( E. x ph  /\  E* x ph ) )
 
Theoremexmoeu2 2497 Existence implies "at most one" is equivalent to uniqueness. (Contributed by NM, 5-Apr-2004.)
 |-  ( E. x ph  ->  ( E* x ph  <->  E! x ph ) )
 
Theoremeu3v 2498* An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.) Add a distinct variable condition on  ph. (Revised by Wolf Lammen, 29-May-2019.)
 |-  ( E! x ph  <->  ( E. x ph  /\  E. y A. x ( ph  ->  x  =  y ) ) )
 
Theoremeumo 2499 Existential uniqueness implies "at most one." (Contributed by NM, 23-Mar-1995.)
 |-  ( E! x ph  ->  E* x ph )
 
Theoremeumoi 2500 "At most one" inferred from existential uniqueness. (Contributed by NM, 5-Apr-1995.)
 |- 
 E! x ph   =>    |- 
 E* x ph
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >