MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbequ2 Structured version   Visualization version   Unicode version

Theorem sbequ2 1882
Description: An equality theorem for substitution. (Contributed by NM, 16-May-1993.) (Proof shortened by Wolf Lammen, 25-Feb-2018.)
Assertion
Ref Expression
sbequ2  |-  ( x  =  y  ->  ( [ y  /  x ] ph  ->  ph ) )

Proof of Theorem sbequ2
StepHypRef Expression
1 df-sb 1881 . . 3  |-  ( [ y  /  x ] ph 
<->  ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
) )
21simplbi 476 . 2  |-  ( [ y  /  x ] ph  ->  ( x  =  y  ->  ph ) )
32com12 32 1  |-  ( x  =  y  ->  ( [ y  /  x ] ph  ->  ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   E.wex 1704   [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-sb 1881
This theorem is referenced by:  stdpc7  1958  sbequ12  2111  dfsb2  2373  sbequi  2375  sbi1  2392  bj-mo3OLD  32832  2pm13.193  38768  2pm13.193VD  39139
  Copyright terms: Public domain W3C validator