Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2pm13.193VD Structured version   Visualization version   Unicode version

Theorem 2pm13.193VD 39139
Description: Virtual deduction proof of 2pm13.193 38768. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 2pm13.193 38768 is 2pm13.193VD 39139 without virtual deductions and was automatically derived from 2pm13.193VD 39139. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1::  |-  (. ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  ->.  ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) ).
2:1:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  ->.  ( x  =  u  /\  y  =  v ) ).
3:2:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  ->.  x  =  u ).
4:1:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  ->.  [ u  /  x ] [ v  /  y ] ph ).
5:3,4:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  ->.  ( [ u  /  x ] [ v  /  y ] ph  /\  x  =  u ) ).
6:5:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  ->.  ( [ v  /  y ] ph  /\  x  =  u ) ).
7:6:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  ->.  [ v  /  y ] ph ).
8:2:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  ->.  y  =  v ).
9:7,8:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  ->.  ( [ v  /  y ] ph  /\  y  =  v ) ).
10:9:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  ->.  ( ph  /\  y  =  v ) ).
11:10:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  ->.  ph ).
12:2,11:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [  v  /  y ] ph )  ->.  ( ( x  =  u  /\  y  =  v )  /\  ph ) ).
13:12:  |-  ( ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph )  ->  ( ( x  =  u  /\  y  =  v )  /\  ph ) )
14::  |-  (. ( ( x  =  u  /\  y  =  v )  /\  ph )  ->.  ( (  x  =  u  /\  y  =  v )  /\  ph ) ).
15:14:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  ph )  ->.  ( x  =  u  /\  y  =  v ) ).
16:15:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  ph )  ->.  y  =  v ).
17:14:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  ph )  ->.  ph  ).
18:16,17:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  ph )  ->.  (  ph  /\  y  =  v ) ).
19:18:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  ph )  ->.  ( [  v  /  y ] ph  /\  y  =  v ) ).
20:15:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  ph )  ->.  x  =  u ).
21:19:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  ph )  ->.  [ v  /  y ] ph ).
22:20,21:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  ph )  ->.  ( [  v  /  y ] ph  /\  x  =  u ) ).
23:22:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  ph )  ->.  ( [  u  /  x ] [ v  /  y ] ph  /\  x  =  u ) ).
24:23:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  ph )  ->.  [ u  /  x ] [ v  /  y ] ph ).
25:15,24:  |-  (. ( ( x  =  u  /\  y  =  v )  /\  ph )  ->.  ( (  x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) ).
26:25:  |-  ( ( ( x  =  u  /\  y  =  v )  /\  ph )  ->  ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) )
qed:13,26:  |-  ( ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph )  <->  ( ( x  =  u  /\  y  =  v )  /\  ph ) )
Assertion
Ref Expression
2pm13.193VD  |-  ( ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) 
<->  ( ( x  =  u  /\  y  =  v )  /\  ph ) )

Proof of Theorem 2pm13.193VD
StepHypRef Expression
1 idn1 38790 . . . . 5  |-  (. (
( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) 
->.  ( ( x  =  u  /\  y  =  v )  /\  [
u  /  x ] [ v  /  y ] ph ) ).
2 simpl 473 . . . . 5  |-  ( ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph )  ->  ( x  =  u  /\  y  =  v ) )
31, 2e1a 38852 . . . 4  |-  (. (
( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) 
->.  ( x  =  u  /\  y  =  v ) ).
4 simpl 473 . . . . . . . . . . 11  |-  ( ( x  =  u  /\  y  =  v )  ->  x  =  u )
53, 4e1a 38852 . . . . . . . . . 10  |-  (. (
( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) 
->.  x  =  u ).
6 simpr 477 . . . . . . . . . . 11  |-  ( ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph )  ->  [ u  /  x ] [ v  / 
y ] ph )
71, 6e1a 38852 . . . . . . . . . 10  |-  (. (
( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) 
->.  [ u  /  x ] [ v  /  y ] ph ).
8 pm3.21 464 . . . . . . . . . 10  |-  ( x  =  u  ->  ( [ u  /  x ] [ v  /  y ] ph  ->  ( [
u  /  x ] [ v  /  y ] ph  /\  x  =  u ) ) )
95, 7, 8e11 38913 . . . . . . . . 9  |-  (. (
( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) 
->.  ( [ u  /  x ] [ v  / 
y ] ph  /\  x  =  u ) ).
10 sbequ2 1882 . . . . . . . . . 10  |-  ( x  =  u  ->  ( [ u  /  x ] [ v  /  y ] ph  ->  [ v  /  y ] ph ) )
1110imdistanri 727 . . . . . . . . 9  |-  ( ( [ u  /  x ] [ v  /  y ] ph  /\  x  =  u )  ->  ( [ v  /  y ] ph  /\  x  =  u ) )
129, 11e1a 38852 . . . . . . . 8  |-  (. (
( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) 
->.  ( [ v  / 
y ] ph  /\  x  =  u ) ).
13 simpl 473 . . . . . . . 8  |-  ( ( [ v  /  y ] ph  /\  x  =  u )  ->  [ v  /  y ] ph )
1412, 13e1a 38852 . . . . . . 7  |-  (. (
( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) 
->.  [ v  /  y ] ph ).
15 simpr 477 . . . . . . . 8  |-  ( ( x  =  u  /\  y  =  v )  ->  y  =  v )
163, 15e1a 38852 . . . . . . 7  |-  (. (
( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) 
->.  y  =  v ).
17 pm3.2 463 . . . . . . 7  |-  ( [ v  /  y ]
ph  ->  ( y  =  v  ->  ( [
v  /  y ]
ph  /\  y  =  v ) ) )
1814, 16, 17e11 38913 . . . . . 6  |-  (. (
( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) 
->.  ( [ v  / 
y ] ph  /\  y  =  v ) ).
19 sbequ2 1882 . . . . . . 7  |-  ( y  =  v  ->  ( [ v  /  y ] ph  ->  ph ) )
2019imdistanri 727 . . . . . 6  |-  ( ( [ v  /  y ] ph  /\  y  =  v )  ->  ( ph  /\  y  =  v ) )
2118, 20e1a 38852 . . . . 5  |-  (. (
( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) 
->.  ( ph  /\  y  =  v ) ).
22 simpl 473 . . . . 5  |-  ( (
ph  /\  y  =  v )  ->  ph )
2321, 22e1a 38852 . . . 4  |-  (. (
( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) 
->.  ph ).
24 pm3.2 463 . . . 4  |-  ( ( x  =  u  /\  y  =  v )  ->  ( ph  ->  (
( x  =  u  /\  y  =  v )  /\  ph )
) )
253, 23, 24e11 38913 . . 3  |-  (. (
( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) 
->.  ( ( x  =  u  /\  y  =  v )  /\  ph ) ).
2625in1 38787 . 2  |-  ( ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph )  ->  ( ( x  =  u  /\  y  =  v )  /\  ph ) )
27 idn1 38790 . . . . 5  |-  (. (
( x  =  u  /\  y  =  v )  /\  ph )  ->.  ( ( x  =  u  /\  y  =  v )  /\  ph ) ).
28 simpl 473 . . . . 5  |-  ( ( ( x  =  u  /\  y  =  v )  /\  ph )  ->  ( x  =  u  /\  y  =  v ) )
2927, 28e1a 38852 . . . 4  |-  (. (
( x  =  u  /\  y  =  v )  /\  ph )  ->.  ( x  =  u  /\  y  =  v ) ).
3029, 4e1a 38852 . . . . . . 7  |-  (. (
( x  =  u  /\  y  =  v )  /\  ph )  ->.  x  =  u ).
3129, 15e1a 38852 . . . . . . . . . 10  |-  (. (
( x  =  u  /\  y  =  v )  /\  ph )  ->.  y  =  v ).
32 simpr 477 . . . . . . . . . . 11  |-  ( ( ( x  =  u  /\  y  =  v )  /\  ph )  ->  ph )
3327, 32e1a 38852 . . . . . . . . . 10  |-  (. (
( x  =  u  /\  y  =  v )  /\  ph )  ->.  ph ).
34 pm3.21 464 . . . . . . . . . 10  |-  ( y  =  v  ->  ( ph  ->  ( ph  /\  y  =  v )
) )
3531, 33, 34e11 38913 . . . . . . . . 9  |-  (. (
( x  =  u  /\  y  =  v )  /\  ph )  ->.  (
ph  /\  y  =  v ) ).
36 sbequ1 2110 . . . . . . . . . 10  |-  ( y  =  v  ->  ( ph  ->  [ v  / 
y ] ph )
)
3736imdistanri 727 . . . . . . . . 9  |-  ( (
ph  /\  y  =  v )  ->  ( [ v  /  y ] ph  /\  y  =  v ) )
3835, 37e1a 38852 . . . . . . . 8  |-  (. (
( x  =  u  /\  y  =  v )  /\  ph )  ->.  ( [ v  /  y ] ph  /\  y  =  v ) ).
39 simpl 473 . . . . . . . 8  |-  ( ( [ v  /  y ] ph  /\  y  =  v )  ->  [ v  /  y ] ph )
4038, 39e1a 38852 . . . . . . 7  |-  (. (
( x  =  u  /\  y  =  v )  /\  ph )  ->.  [ v  /  y ]
ph ).
41 pm3.21 464 . . . . . . 7  |-  ( x  =  u  ->  ( [ v  /  y ] ph  ->  ( [
v  /  y ]
ph  /\  x  =  u ) ) )
4230, 40, 41e11 38913 . . . . . 6  |-  (. (
( x  =  u  /\  y  =  v )  /\  ph )  ->.  ( [ v  /  y ] ph  /\  x  =  u ) ).
43 sbequ1 2110 . . . . . . 7  |-  ( x  =  u  ->  ( [ v  /  y ] ph  ->  [ u  /  x ] [ v  /  y ] ph ) )
4443imdistanri 727 . . . . . 6  |-  ( ( [ v  /  y ] ph  /\  x  =  u )  ->  ( [ u  /  x ] [ v  /  y ] ph  /\  x  =  u ) )
4542, 44e1a 38852 . . . . 5  |-  (. (
( x  =  u  /\  y  =  v )  /\  ph )  ->.  ( [ u  /  x ] [ v  /  y ] ph  /\  x  =  u ) ).
46 simpl 473 . . . . 5  |-  ( ( [ u  /  x ] [ v  /  y ] ph  /\  x  =  u )  ->  [ u  /  x ] [ v  /  y ] ph )
4745, 46e1a 38852 . . . 4  |-  (. (
( x  =  u  /\  y  =  v )  /\  ph )  ->.  [ u  /  x ] [ v  /  y ] ph ).
48 pm3.2 463 . . . 4  |-  ( ( x  =  u  /\  y  =  v )  ->  ( [ u  /  x ] [ v  / 
y ] ph  ->  ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) ) )
4929, 47, 48e11 38913 . . 3  |-  (. (
( x  =  u  /\  y  =  v )  /\  ph )  ->.  ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) ).
5049in1 38787 . 2  |-  ( ( ( x  =  u  /\  y  =  v )  /\  ph )  ->  ( ( x  =  u  /\  y  =  v )  /\  [
u  /  x ] [ v  /  y ] ph ) )
5126, 50impbii 199 1  |-  ( ( ( x  =  u  /\  y  =  v )  /\  [ u  /  x ] [ v  /  y ] ph ) 
<->  ( ( x  =  u  /\  y  =  v )  /\  ph ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-sb 1881  df-vd1 38786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator