Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-mo3OLD Structured version   Visualization version   Unicode version

Theorem bj-mo3OLD 32832
Description: Obsolete proof of mo3 2507 temporarily kept here to check it gives no additional insight. (Contributed by NM, 8-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
bj-mo3OLD.nf  |-  F/ y
ph
Assertion
Ref Expression
bj-mo3OLD  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem bj-mo3OLD
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 mo2v 2477 . . 3  |-  ( E* x ph  <->  E. z A. x ( ph  ->  x  =  z ) )
2 bj-mo3OLD.nf . . . . . . . . 9  |-  F/ y
ph
3 nfv 1843 . . . . . . . . 9  |-  F/ y  x  =  z
42, 3nfim 1825 . . . . . . . 8  |-  F/ y ( ph  ->  x  =  z )
5 nfs1v 2437 . . . . . . . . 9  |-  F/ x [ y  /  x ] ph
6 nfv 1843 . . . . . . . . 9  |-  F/ x  y  =  z
75, 6nfim 1825 . . . . . . . 8  |-  F/ x
( [ y  /  x ] ph  ->  y  =  z )
8 sbequ2 1882 . . . . . . . . 9  |-  ( x  =  y  ->  ( [ y  /  x ] ph  ->  ph ) )
9 ax7 1943 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  =  z  -> 
y  =  z ) )
108, 9imim12d 81 . . . . . . . 8  |-  ( x  =  y  ->  (
( ph  ->  x  =  z )  ->  ( [ y  /  x ] ph  ->  y  =  z ) ) )
114, 7, 10cbv3 2265 . . . . . . 7  |-  ( A. x ( ph  ->  x  =  z )  ->  A. y ( [ y  /  x ] ph  ->  y  =  z ) )
1211ancli 574 . . . . . 6  |-  ( A. x ( ph  ->  x  =  z )  -> 
( A. x (
ph  ->  x  =  z )  /\  A. y
( [ y  /  x ] ph  ->  y  =  z ) ) )
134, 7aaan 2170 . . . . . 6  |-  ( A. x A. y ( (
ph  ->  x  =  z )  /\  ( [ y  /  x ] ph  ->  y  =  z ) )  <->  ( A. x ( ph  ->  x  =  z )  /\  A. y ( [ y  /  x ] ph  ->  y  =  z ) ) )
1412, 13sylibr 224 . . . . 5  |-  ( A. x ( ph  ->  x  =  z )  ->  A. x A. y ( ( ph  ->  x  =  z )  /\  ( [ y  /  x ] ph  ->  y  =  z ) ) )
15 prth 595 . . . . . . 7  |-  ( ( ( ph  ->  x  =  z )  /\  ( [ y  /  x ] ph  ->  y  =  z ) )  -> 
( ( ph  /\  [ y  /  x ] ph )  ->  ( x  =  z  /\  y  =  z ) ) )
16 equtr2 1954 . . . . . . 7  |-  ( ( x  =  z  /\  y  =  z )  ->  x  =  y )
1715, 16syl6 35 . . . . . 6  |-  ( ( ( ph  ->  x  =  z )  /\  ( [ y  /  x ] ph  ->  y  =  z ) )  -> 
( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )
18172alimi 1740 . . . . 5  |-  ( A. x A. y ( (
ph  ->  x  =  z )  /\  ( [ y  /  x ] ph  ->  y  =  z ) )  ->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
1914, 18syl 17 . . . 4  |-  ( A. x ( ph  ->  x  =  z )  ->  A. x A. y ( ( ph  /\  [
y  /  x ] ph )  ->  x  =  y ) )
2019exlimiv 1858 . . 3  |-  ( E. z A. x (
ph  ->  x  =  z )  ->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
211, 20sylbi 207 . 2  |-  ( E* x ph  ->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
22 nfa1 2028 . . . . . 6  |-  F/ y A. y A. x
( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )
23 pm3.3 460 . . . . . . . . . 10  |-  ( ( ( ph  /\  [
y  /  x ] ph )  ->  x  =  y )  ->  ( ph  ->  ( [ y  /  x ] ph  ->  x  =  y ) ) )
2423com3r 87 . . . . . . . . 9  |-  ( [ y  /  x ] ph  ->  ( ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y )  ->  ( ph  ->  x  =  y ) ) )
255, 24alimd 2081 . . . . . . . 8  |-  ( [ y  /  x ] ph  ->  ( A. x
( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )  ->  A. x
( ph  ->  x  =  y ) ) )
2625com12 32 . . . . . . 7  |-  ( A. x ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y )  -> 
( [ y  /  x ] ph  ->  A. x
( ph  ->  x  =  y ) ) )
2726sps 2055 . . . . . 6  |-  ( A. y A. x ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y )  ->  ( [ y  /  x ] ph  ->  A. x ( ph  ->  x  =  y ) ) )
2822, 27eximd 2085 . . . . 5  |-  ( A. y A. x ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y )  ->  ( E. y [ y  /  x ] ph  ->  E. y A. x ( ph  ->  x  =  y ) ) )
292sb8e 2425 . . . . 5  |-  ( E. x ph  <->  E. y [ y  /  x ] ph )
302mo2 2479 . . . . 5  |-  ( E* x ph  <->  E. y A. x ( ph  ->  x  =  y ) )
3128, 29, 303imtr4g 285 . . . 4  |-  ( A. y A. x ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y )  ->  ( E. x ph  ->  E* x ph ) )
32 moabs 2501 . . . 4  |-  ( E* x ph  <->  ( E. x ph  ->  E* x ph ) )
3331, 32sylibr 224 . . 3  |-  ( A. y A. x ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y )  ->  E* x ph )
3433alcoms 2035 . 2  |-  ( A. x A. y ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y )  ->  E* x ph )
3521, 34impbii 199 1  |-  ( E* x ph  <->  A. x A. y ( ( ph  /\ 
[ y  /  x ] ph )  ->  x  =  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481   E.wex 1704   F/wnf 1708   [wsb 1880   E*wmo 2471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator