| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbied | Structured version Visualization version Unicode version | ||
| Description: Conversion of implicit substitution to explicit substitution (deduction version of sbie 2408). (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Jun-2018.) |
| Ref | Expression |
|---|---|
| sbied.1 |
|
| sbied.2 |
|
| sbied.3 |
|
| Ref | Expression |
|---|---|
| sbied |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbied.1 |
. . . 4
| |
| 2 | 1 | sbrim 2396 |
. . 3
|
| 3 | sbied.2 |
. . . . 5
| |
| 4 | 1, 3 | nfim1 2067 |
. . . 4
|
| 5 | sbied.3 |
. . . . . 6
| |
| 6 | 5 | com12 32 |
. . . . 5
|
| 7 | 6 | pm5.74d 262 |
. . . 4
|
| 8 | 4, 7 | sbie 2408 |
. . 3
|
| 9 | 2, 8 | bitr3i 266 |
. 2
|
| 10 | 9 | pm5.74ri 261 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: sbiedv 2410 sbco2 2415 wl-equsb3 33337 |
| Copyright terms: Public domain | W3C validator |