![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp312 | Structured version Visualization version Unicode version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp312 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp12 1092 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 3ad2ant3 1084 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: dalemrot 34943 dalem-cly 34957 dath2 35023 cdleme26e 35647 cdleme38m 35751 cdleme38n 35752 cdleme39n 35754 cdlemg28b 35991 cdlemk7 36136 cdlemk11 36137 cdlemk12 36138 cdlemk7u 36158 cdlemk11u 36159 cdlemk12u 36160 cdlemk22 36181 cdlemk23-3 36190 cdlemk25-3 36192 |
Copyright terms: Public domain | W3C validator |