Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dath2 Structured version   Visualization version   Unicode version

Theorem dath2 35023
Description: Version of Desargues' Theorem dath 35022 with a different variable ordering. (Contributed by NM, 7-Oct-2012.)
Hypotheses
Ref Expression
dathb.b  |-  B  =  ( Base `  K
)
dathb.l  |-  .<_  =  ( le `  K )
dathb.j  |-  .\/  =  ( join `  K )
dathb.a  |-  A  =  ( Atoms `  K )
dathb.m  |-  ./\  =  ( meet `  K )
dathb.o  |-  O  =  ( LPlanes `  K )
dathb.d  |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )
dathb.e  |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )
dathb.f  |-  F  =  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )
Assertion
Ref Expression
dath2  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  D  .<_  ( E  .\/  F
) )

Proof of Theorem dath2
StepHypRef Expression
1 simp11 1091 . 2  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  ( K  e.  HL  /\  C  e.  B ) )
2 simp122 1194 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  Q  e.  A )
3 simp123 1195 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  R  e.  A )
4 simp121 1193 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  P  e.  A )
52, 3, 43jca 1242 . 2  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )
)
6 simp132 1197 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  T  e.  A )
7 simp133 1198 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  U  e.  A )
8 simp131 1196 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  S  e.  A )
96, 7, 83jca 1242 . 2  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  ( T  e.  A  /\  U  e.  A  /\  S  e.  A )
)
10 simp11l 1172 . . . 4  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  K  e.  HL )
11 dathb.j . . . . 5  |-  .\/  =  ( join `  K )
12 dathb.a . . . . 5  |-  A  =  ( Atoms `  K )
1311, 12hlatjrot 34659 . . . 4  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A
) )  ->  (
( Q  .\/  R
)  .\/  P )  =  ( ( P 
.\/  Q )  .\/  R ) )
1410, 2, 3, 4, 13syl13anc 1328 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  (
( Q  .\/  R
)  .\/  P )  =  ( ( P 
.\/  Q )  .\/  R ) )
15 simp2l 1087 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  (
( P  .\/  Q
)  .\/  R )  e.  O )
1614, 15eqeltrd 2701 . 2  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  (
( Q  .\/  R
)  .\/  P )  e.  O )
1711, 12hlatjrot 34659 . . . 4  |-  ( ( K  e.  HL  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  ->  (
( T  .\/  U
)  .\/  S )  =  ( ( S 
.\/  T )  .\/  U ) )
1810, 6, 7, 8, 17syl13anc 1328 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  (
( T  .\/  U
)  .\/  S )  =  ( ( S 
.\/  T )  .\/  U ) )
19 simp2r 1088 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  (
( S  .\/  T
)  .\/  U )  e.  O )
2018, 19eqeltrd 2701 . 2  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  (
( T  .\/  U
)  .\/  S )  e.  O )
21 simp312 1209 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  -.  C  .<_  ( Q  .\/  R ) )
22 simp313 1210 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  -.  C  .<_  ( R  .\/  P ) )
23 simp311 1208 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  -.  C  .<_  ( P  .\/  Q ) )
2421, 22, 233jca 1242 . 2  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  ( -.  C  .<_  ( Q 
.\/  R )  /\  -.  C  .<_  ( R 
.\/  P )  /\  -.  C  .<_  ( P 
.\/  Q ) ) )
25 simp322 1212 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  -.  C  .<_  ( T  .\/  U ) )
26 simp323 1213 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  -.  C  .<_  ( U  .\/  S ) )
27 simp321 1211 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  -.  C  .<_  ( S  .\/  T ) )
2825, 26, 273jca 1242 . 2  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  ( -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S )  /\  -.  C  .<_  ( S 
.\/  T ) ) )
29 simp332 1215 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  C  .<_  ( Q  .\/  T
) )
30 simp333 1216 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  C  .<_  ( R  .\/  U
) )
31 simp331 1214 . . 3  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  C  .<_  ( P  .\/  S
) )
3229, 30, 313jca 1242 . 2  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P 
.\/  S ) ) )
33 dathb.b . . 3  |-  B  =  ( Base `  K
)
34 dathb.l . . 3  |-  .<_  =  ( le `  K )
35 dathb.m . . 3  |-  ./\  =  ( meet `  K )
36 dathb.o . . 3  |-  O  =  ( LPlanes `  K )
37 dathb.e . . 3  |-  E  =  ( ( Q  .\/  R )  ./\  ( T  .\/  U ) )
38 dathb.f . . 3  |-  F  =  ( ( R  .\/  P )  ./\  ( U  .\/  S ) )
39 dathb.d . . 3  |-  D  =  ( ( P  .\/  Q )  ./\  ( S  .\/  T ) )
4033, 34, 11, 12, 35, 36, 37, 38, 39dath 35022 . 2  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( Q  e.  A  /\  R  e.  A  /\  P  e.  A )  /\  ( T  e.  A  /\  U  e.  A  /\  S  e.  A
) )  /\  (
( ( Q  .\/  R )  .\/  P )  e.  O  /\  (
( T  .\/  U
)  .\/  S )  e.  O )  /\  (
( -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P )  /\  -.  C  .<_  ( P  .\/  Q ) )  /\  ( -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S )  /\  -.  C  .<_  ( S  .\/  T
) )  /\  ( C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R  .\/  U )  /\  C  .<_  ( P 
.\/  S ) ) ) )  ->  D  .<_  ( E  .\/  F
) )
411, 5, 9, 16, 20, 24, 28, 32, 40syl323anc 1356 1  |-  ( ( ( ( K  e.  HL  /\  C  e.  B )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  (
( ( P  .\/  Q )  .\/  R )  e.  O  /\  (
( S  .\/  T
)  .\/  U )  e.  O )  /\  (
( -.  C  .<_  ( P  .\/  Q )  /\  -.  C  .<_  ( Q  .\/  R )  /\  -.  C  .<_  ( R  .\/  P ) )  /\  ( -.  C  .<_  ( S  .\/  T )  /\  -.  C  .<_  ( T  .\/  U )  /\  -.  C  .<_  ( U  .\/  S
) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q  .\/  T )  /\  C  .<_  ( R 
.\/  U ) ) ) )  ->  D  .<_  ( E  .\/  F
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Atomscatm 34550   HLchlt 34637   LPlanesclpl 34778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786
This theorem is referenced by:  dalawlem1  35157
  Copyright terms: Public domain W3C validator