Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem-cly Structured version   Visualization version   Unicode version

Theorem dalem-cly 34957
Description: Lemma for dalem9 34958. Center of perspectivity  C is not in plane  Y (when  Y and  Z are different planes). (Contributed by NM, 13-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
dalemc.l  |-  .<_  =  ( le `  K )
dalemc.j  |-  .\/  =  ( join `  K )
dalemc.a  |-  A  =  ( Atoms `  K )
dalem-cly.o  |-  O  =  ( LPlanes `  K )
dalem-cly.y  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
dalem-cly.z  |-  Z  =  ( ( S  .\/  T )  .\/  U )
Assertion
Ref Expression
dalem-cly  |-  ( (
ph  /\  Y  =/=  Z )  ->  -.  C  .<_  Y )

Proof of Theorem dalem-cly
StepHypRef Expression
1 dalema.ph . . . . . . 7  |-  ( ph  <->  ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) ) )
21dalemkelat 34910 . . . . . 6  |-  ( ph  ->  K  e.  Lat )
3 dalemc.a . . . . . . 7  |-  A  =  ( Atoms `  K )
41, 3dalemceb 34924 . . . . . 6  |-  ( ph  ->  C  e.  ( Base `  K ) )
5 dalem-cly.o . . . . . . 7  |-  O  =  ( LPlanes `  K )
61, 5dalemyeb 34935 . . . . . 6  |-  ( ph  ->  Y  e.  ( Base `  K ) )
7 eqid 2622 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
8 dalemc.l . . . . . . 7  |-  .<_  =  ( le `  K )
9 dalemc.j . . . . . . 7  |-  .\/  =  ( join `  K )
107, 8, 9latleeqj1 17063 . . . . . 6  |-  ( ( K  e.  Lat  /\  C  e.  ( Base `  K )  /\  Y  e.  ( Base `  K
) )  ->  ( C  .<_  Y  <->  ( C  .\/  Y )  =  Y ) )
112, 4, 6, 10syl3anc 1326 . . . . 5  |-  ( ph  ->  ( C  .<_  Y  <->  ( C  .\/  Y )  =  Y ) )
121dalemclpjs 34920 . . . . . . . . . . . . 13  |-  ( ph  ->  C  .<_  ( P  .\/  S ) )
131dalemkehl 34909 . . . . . . . . . . . . . 14  |-  ( ph  ->  K  e.  HL )
14 dalem-cly.y . . . . . . . . . . . . . . 15  |-  Y  =  ( ( P  .\/  Q )  .\/  R )
151, 8, 9, 3, 5, 14dalemcea 34946 . . . . . . . . . . . . . 14  |-  ( ph  ->  C  e.  A )
161dalemsea 34915 . . . . . . . . . . . . . 14  |-  ( ph  ->  S  e.  A )
171dalempea 34912 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  A )
181dalemqea 34913 . . . . . . . . . . . . . . 15  |-  ( ph  ->  Q  e.  A )
191dalem-clpjq 34923 . . . . . . . . . . . . . . 15  |-  ( ph  ->  -.  C  .<_  ( P 
.\/  Q ) )
208, 9, 3atnlej1 34665 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( C  e.  A  /\  P  e.  A  /\  Q  e.  A
)  /\  -.  C  .<_  ( P  .\/  Q
) )  ->  C  =/=  P )
2113, 15, 17, 18, 19, 20syl131anc 1339 . . . . . . . . . . . . . 14  |-  ( ph  ->  C  =/=  P )
228, 9, 3hlatexch1 34681 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( C  e.  A  /\  S  e.  A  /\  P  e.  A
)  /\  C  =/=  P )  ->  ( C  .<_  ( P  .\/  S
)  ->  S  .<_  ( P  .\/  C ) ) )
2313, 15, 16, 17, 21, 22syl131anc 1339 . . . . . . . . . . . . 13  |-  ( ph  ->  ( C  .<_  ( P 
.\/  S )  ->  S  .<_  ( P  .\/  C ) ) )
2412, 23mpd 15 . . . . . . . . . . . 12  |-  ( ph  ->  S  .<_  ( P  .\/  C ) )
259, 3hlatjcom 34654 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  C  e.  A  /\  P  e.  A )  ->  ( C  .\/  P
)  =  ( P 
.\/  C ) )
2613, 15, 17, 25syl3anc 1326 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  .\/  P
)  =  ( P 
.\/  C ) )
2724, 26breqtrrd 4681 . . . . . . . . . . 11  |-  ( ph  ->  S  .<_  ( C  .\/  P ) )
281dalemclqjt 34921 . . . . . . . . . . . . 13  |-  ( ph  ->  C  .<_  ( Q  .\/  T ) )
291dalemtea 34916 . . . . . . . . . . . . . 14  |-  ( ph  ->  T  e.  A )
301dalemrea 34914 . . . . . . . . . . . . . . 15  |-  ( ph  ->  R  e.  A )
31 simp312 1209 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  -.  C  .<_  ( Q  .\/  R ) )
321, 31sylbi 207 . . . . . . . . . . . . . . 15  |-  ( ph  ->  -.  C  .<_  ( Q 
.\/  R ) )
338, 9, 3atnlej1 34665 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( C  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  -.  C  .<_  ( Q  .\/  R
) )  ->  C  =/=  Q )
3413, 15, 18, 30, 32, 33syl131anc 1339 . . . . . . . . . . . . . 14  |-  ( ph  ->  C  =/=  Q )
358, 9, 3hlatexch1 34681 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( C  e.  A  /\  T  e.  A  /\  Q  e.  A
)  /\  C  =/=  Q )  ->  ( C  .<_  ( Q  .\/  T
)  ->  T  .<_  ( Q  .\/  C ) ) )
3613, 15, 29, 18, 34, 35syl131anc 1339 . . . . . . . . . . . . 13  |-  ( ph  ->  ( C  .<_  ( Q 
.\/  T )  ->  T  .<_  ( Q  .\/  C ) ) )
3728, 36mpd 15 . . . . . . . . . . . 12  |-  ( ph  ->  T  .<_  ( Q  .\/  C ) )
389, 3hlatjcom 34654 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  C  e.  A  /\  Q  e.  A )  ->  ( C  .\/  Q
)  =  ( Q 
.\/  C ) )
3913, 15, 18, 38syl3anc 1326 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  .\/  Q
)  =  ( Q 
.\/  C ) )
4037, 39breqtrrd 4681 . . . . . . . . . . 11  |-  ( ph  ->  T  .<_  ( C  .\/  Q ) )
411, 3dalemseb 34928 . . . . . . . . . . . 12  |-  ( ph  ->  S  e.  ( Base `  K ) )
427, 9, 3hlatjcl 34653 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  C  e.  A  /\  P  e.  A )  ->  ( C  .\/  P
)  e.  ( Base `  K ) )
4313, 15, 17, 42syl3anc 1326 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  .\/  P
)  e.  ( Base `  K ) )
441, 3dalemteb 34929 . . . . . . . . . . . 12  |-  ( ph  ->  T  e.  ( Base `  K ) )
457, 9, 3hlatjcl 34653 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  C  e.  A  /\  Q  e.  A )  ->  ( C  .\/  Q
)  e.  ( Base `  K ) )
4613, 15, 18, 45syl3anc 1326 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  .\/  Q
)  e.  ( Base `  K ) )
477, 8, 9latjlej12 17067 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  ( C  .\/  P )  e.  ( Base `  K
) )  /\  ( T  e.  ( Base `  K )  /\  ( C  .\/  Q )  e.  ( Base `  K
) ) )  -> 
( ( S  .<_  ( C  .\/  P )  /\  T  .<_  ( C 
.\/  Q ) )  ->  ( S  .\/  T )  .<_  ( ( C  .\/  P )  .\/  ( C  .\/  Q ) ) ) )
482, 41, 43, 44, 46, 47syl122anc 1335 . . . . . . . . . . 11  |-  ( ph  ->  ( ( S  .<_  ( C  .\/  P )  /\  T  .<_  ( C 
.\/  Q ) )  ->  ( S  .\/  T )  .<_  ( ( C  .\/  P )  .\/  ( C  .\/  Q ) ) ) )
4927, 40, 48mp2and 715 . . . . . . . . . 10  |-  ( ph  ->  ( S  .\/  T
)  .<_  ( ( C 
.\/  P )  .\/  ( C  .\/  Q ) ) )
501, 3dalempeb 34925 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  ( Base `  K ) )
511, 3dalemqeb 34926 . . . . . . . . . . 11  |-  ( ph  ->  Q  e.  ( Base `  K ) )
527, 9latjjdi 17103 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( C  e.  ( Base `  K )  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) ) )  -> 
( C  .\/  ( P  .\/  Q ) )  =  ( ( C 
.\/  P )  .\/  ( C  .\/  Q ) ) )
532, 4, 50, 51, 52syl13anc 1328 . . . . . . . . . 10  |-  ( ph  ->  ( C  .\/  ( P  .\/  Q ) )  =  ( ( C 
.\/  P )  .\/  ( C  .\/  Q ) ) )
5449, 53breqtrrd 4681 . . . . . . . . 9  |-  ( ph  ->  ( S  .\/  T
)  .<_  ( C  .\/  ( P  .\/  Q ) ) )
551dalemclrju 34922 . . . . . . . . . . 11  |-  ( ph  ->  C  .<_  ( R  .\/  U ) )
561dalemuea 34917 . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  A )
57 simp313 1210 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  C  e.  ( Base `  K
) )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  ( S  e.  A  /\  T  e.  A  /\  U  e.  A
) )  /\  ( Y  e.  O  /\  Z  e.  O )  /\  ( ( -.  C  .<_  ( P  .\/  Q
)  /\  -.  C  .<_  ( Q  .\/  R
)  /\  -.  C  .<_  ( R  .\/  P
) )  /\  ( -.  C  .<_  ( S 
.\/  T )  /\  -.  C  .<_  ( T 
.\/  U )  /\  -.  C  .<_  ( U 
.\/  S ) )  /\  ( C  .<_  ( P  .\/  S )  /\  C  .<_  ( Q 
.\/  T )  /\  C  .<_  ( R  .\/  U ) ) ) )  ->  -.  C  .<_  ( R  .\/  P ) )
581, 57sylbi 207 . . . . . . . . . . . . 13  |-  ( ph  ->  -.  C  .<_  ( R 
.\/  P ) )
598, 9, 3atnlej1 34665 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  ( C  e.  A  /\  R  e.  A  /\  P  e.  A
)  /\  -.  C  .<_  ( R  .\/  P
) )  ->  C  =/=  R )
6013, 15, 30, 17, 58, 59syl131anc 1339 . . . . . . . . . . . 12  |-  ( ph  ->  C  =/=  R )
618, 9, 3hlatexch1 34681 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  ( C  e.  A  /\  U  e.  A  /\  R  e.  A
)  /\  C  =/=  R )  ->  ( C  .<_  ( R  .\/  U
)  ->  U  .<_  ( R  .\/  C ) ) )
6213, 15, 56, 30, 60, 61syl131anc 1339 . . . . . . . . . . 11  |-  ( ph  ->  ( C  .<_  ( R 
.\/  U )  ->  U  .<_  ( R  .\/  C ) ) )
6355, 62mpd 15 . . . . . . . . . 10  |-  ( ph  ->  U  .<_  ( R  .\/  C ) )
649, 3hlatjcom 34654 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  C  e.  A  /\  R  e.  A )  ->  ( C  .\/  R
)  =  ( R 
.\/  C ) )
6513, 15, 30, 64syl3anc 1326 . . . . . . . . . 10  |-  ( ph  ->  ( C  .\/  R
)  =  ( R 
.\/  C ) )
6663, 65breqtrrd 4681 . . . . . . . . 9  |-  ( ph  ->  U  .<_  ( C  .\/  R ) )
671, 9, 3dalemsjteb 34932 . . . . . . . . . 10  |-  ( ph  ->  ( S  .\/  T
)  e.  ( Base `  K ) )
681, 9, 3dalempjqeb 34931 . . . . . . . . . . 11  |-  ( ph  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
697, 9latjcl 17051 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  C  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  ->  ( C  .\/  ( P  .\/  Q ) )  e.  (
Base `  K )
)
702, 4, 68, 69syl3anc 1326 . . . . . . . . . 10  |-  ( ph  ->  ( C  .\/  ( P  .\/  Q ) )  e.  ( Base `  K
) )
711, 3dalemueb 34930 . . . . . . . . . 10  |-  ( ph  ->  U  e.  ( Base `  K ) )
727, 9, 3hlatjcl 34653 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  C  e.  A  /\  R  e.  A )  ->  ( C  .\/  R
)  e.  ( Base `  K ) )
7313, 15, 30, 72syl3anc 1326 . . . . . . . . . 10  |-  ( ph  ->  ( C  .\/  R
)  e.  ( Base `  K ) )
747, 8, 9latjlej12 17067 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( ( S  .\/  T )  e.  ( Base `  K )  /\  ( C  .\/  ( P  .\/  Q ) )  e.  (
Base `  K )
)  /\  ( U  e.  ( Base `  K
)  /\  ( C  .\/  R )  e.  (
Base `  K )
) )  ->  (
( ( S  .\/  T )  .<_  ( C  .\/  ( P  .\/  Q
) )  /\  U  .<_  ( C  .\/  R
) )  ->  (
( S  .\/  T
)  .\/  U )  .<_  ( ( C  .\/  ( P  .\/  Q ) )  .\/  ( C 
.\/  R ) ) ) )
752, 67, 70, 71, 73, 74syl122anc 1335 . . . . . . . . 9  |-  ( ph  ->  ( ( ( S 
.\/  T )  .<_  ( C  .\/  ( P 
.\/  Q ) )  /\  U  .<_  ( C 
.\/  R ) )  ->  ( ( S 
.\/  T )  .\/  U )  .<_  ( ( C  .\/  ( P  .\/  Q ) )  .\/  ( C  .\/  R ) ) ) )
7654, 66, 75mp2and 715 . . . . . . . 8  |-  ( ph  ->  ( ( S  .\/  T )  .\/  U ) 
.<_  ( ( C  .\/  ( P  .\/  Q ) )  .\/  ( C 
.\/  R ) ) )
771, 3dalemreb 34927 . . . . . . . . 9  |-  ( ph  ->  R  e.  ( Base `  K ) )
787, 9latjjdi 17103 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( C  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  R  e.  ( Base `  K )
) )  ->  ( C  .\/  ( ( P 
.\/  Q )  .\/  R ) )  =  ( ( C  .\/  ( P  .\/  Q ) ) 
.\/  ( C  .\/  R ) ) )
792, 4, 68, 77, 78syl13anc 1328 . . . . . . . 8  |-  ( ph  ->  ( C  .\/  (
( P  .\/  Q
)  .\/  R )
)  =  ( ( C  .\/  ( P 
.\/  Q ) ) 
.\/  ( C  .\/  R ) ) )
8076, 79breqtrrd 4681 . . . . . . 7  |-  ( ph  ->  ( ( S  .\/  T )  .\/  U ) 
.<_  ( C  .\/  (
( P  .\/  Q
)  .\/  R )
) )
81 dalem-cly.z . . . . . . 7  |-  Z  =  ( ( S  .\/  T )  .\/  U )
8214oveq2i 6661 . . . . . . 7  |-  ( C 
.\/  Y )  =  ( C  .\/  (
( P  .\/  Q
)  .\/  R )
)
8380, 81, 823brtr4g 4687 . . . . . 6  |-  ( ph  ->  Z  .<_  ( C  .\/  Y ) )
84 breq2 4657 . . . . . 6  |-  ( ( C  .\/  Y )  =  Y  ->  ( Z  .<_  ( C  .\/  Y )  <->  Z  .<_  Y ) )
8583, 84syl5ibcom 235 . . . . 5  |-  ( ph  ->  ( ( C  .\/  Y )  =  Y  ->  Z  .<_  Y ) )
8611, 85sylbid 230 . . . 4  |-  ( ph  ->  ( C  .<_  Y  ->  Z  .<_  Y ) )
871dalemzeo 34919 . . . . . 6  |-  ( ph  ->  Z  e.  O )
881dalemyeo 34918 . . . . . 6  |-  ( ph  ->  Y  e.  O )
898, 5lplncmp 34848 . . . . . 6  |-  ( ( K  e.  HL  /\  Z  e.  O  /\  Y  e.  O )  ->  ( Z  .<_  Y  <->  Z  =  Y ) )
9013, 87, 88, 89syl3anc 1326 . . . . 5  |-  ( ph  ->  ( Z  .<_  Y  <->  Z  =  Y ) )
91 eqcom 2629 . . . . 5  |-  ( Z  =  Y  <->  Y  =  Z )
9290, 91syl6bb 276 . . . 4  |-  ( ph  ->  ( Z  .<_  Y  <->  Y  =  Z ) )
9386, 92sylibd 229 . . 3  |-  ( ph  ->  ( C  .<_  Y  ->  Y  =  Z )
)
9493necon3ad 2807 . 2  |-  ( ph  ->  ( Y  =/=  Z  ->  -.  C  .<_  Y ) )
9594imp 445 1  |-  ( (
ph  /\  Y  =/=  Z )  ->  -.  C  .<_  Y )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   Latclat 17045   Atomscatm 34550   HLchlt 34637   LPlanesclpl 34778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785
This theorem is referenced by:  dalem9  34958
  Copyright terms: Public domain W3C validator