| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > spc2ed | Structured version Visualization version Unicode version | ||
| Description: Existential specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017.) |
| Ref | Expression |
|---|---|
| spc2ed.x |
|
| spc2ed.y |
|
| spc2ed.1 |
|
| Ref | Expression |
|---|---|
| spc2ed |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 3215 |
. . . 4
| |
| 2 | elisset 3215 |
. . . 4
| |
| 3 | 1, 2 | anim12i 590 |
. . 3
|
| 4 | eeanv 2182 |
. . 3
| |
| 5 | 3, 4 | sylibr 224 |
. 2
|
| 6 | nfv 1843 |
. . . . 5
| |
| 7 | spc2ed.x |
. . . . 5
| |
| 8 | 6, 7 | nfan 1828 |
. . . 4
|
| 9 | nfv 1843 |
. . . . . 6
| |
| 10 | spc2ed.y |
. . . . . 6
| |
| 11 | 9, 10 | nfan 1828 |
. . . . 5
|
| 12 | anass 681 |
. . . . . . . 8
| |
| 13 | ancom 466 |
. . . . . . . . 9
| |
| 14 | 13 | anbi1i 731 |
. . . . . . . 8
|
| 15 | 12, 14 | bitr3i 266 |
. . . . . . 7
|
| 16 | spc2ed.1 |
. . . . . . . 8
| |
| 17 | 16 | biimparc 504 |
. . . . . . 7
|
| 18 | 15, 17 | sylbir 225 |
. . . . . 6
|
| 19 | 18 | ex 450 |
. . . . 5
|
| 20 | 11, 19 | eximd 2085 |
. . . 4
|
| 21 | 8, 20 | eximd 2085 |
. . 3
|
| 22 | 21 | impancom 456 |
. 2
|
| 23 | 5, 22 | sylan2 491 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 |
| This theorem is referenced by: spc2d 29313 cnvoprab 29498 |
| Copyright terms: Public domain | W3C validator |