| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > spc2d | Structured version Visualization version Unicode version | ||
| Description: Specialization with 2 quantifiers, using implicit substitution. (Contributed by Thierry Arnoux, 23-Aug-2017.) |
| Ref | Expression |
|---|---|
| spc2ed.x |
|
| spc2ed.y |
|
| spc2ed.1 |
|
| Ref | Expression |
|---|---|
| spc2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nalexn 1755 |
. . 3
| |
| 2 | 1 | con1bii 346 |
. 2
|
| 3 | spc2ed.x |
. . . . 5
| |
| 4 | 3 | nfn 1784 |
. . . 4
|
| 5 | spc2ed.y |
. . . . 5
| |
| 6 | 5 | nfn 1784 |
. . . 4
|
| 7 | spc2ed.1 |
. . . . 5
| |
| 8 | 7 | notbid 308 |
. . . 4
|
| 9 | 4, 6, 8 | spc2ed 29312 |
. . 3
|
| 10 | 9 | con1d 139 |
. 2
|
| 11 | 2, 10 | syl5bir 233 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |