MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spimv1 Structured version   Visualization version   Unicode version

Theorem spimv1 2115
Description: Version of spim 2254 with a dv condition, which does not require ax-13 2246. See spimvw 1927 for a version with two dv conditions, requiring fewer axioms, and spimv 2257 for another variant. (Contributed by BJ, 31-May-2019.)
Hypotheses
Ref Expression
spimv1.nf  |-  F/ x ps
spimv1.1  |-  ( x  =  y  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
spimv1  |-  ( A. x ph  ->  ps )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem spimv1
StepHypRef Expression
1 spimv1.nf . 2  |-  F/ x ps
2 ax6ev 1890 . . 3  |-  E. x  x  =  y
3 spimv1.1 . . 3  |-  ( x  =  y  ->  ( ph  ->  ps ) )
42, 3eximii 1764 . 2  |-  E. x
( ph  ->  ps )
51, 419.36i 2099 1  |-  ( A. x ph  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481   F/wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-ex 1705  df-nf 1710
This theorem is referenced by:  cbv3v  2172  bj-chvarv  32725  bj-cbv3v2  32727  wl-cbv3vv  33307
  Copyright terms: Public domain W3C validator