MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spim Structured version   Visualization version   Unicode version

Theorem spim 2254
Description: Specialization, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. The spim 2254 series of theorems requires that only one direction of the substitution hypothesis hold. (Contributed by NM, 10-Jan-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 18-Feb-2018.)
Hypotheses
Ref Expression
spim.1  |-  F/ x ps
spim.2  |-  ( x  =  y  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
spim  |-  ( A. x ph  ->  ps )

Proof of Theorem spim
StepHypRef Expression
1 spim.1 . 2  |-  F/ x ps
2 ax6e 2250 . . 3  |-  E. x  x  =  y
3 spim.2 . . 3  |-  ( x  =  y  ->  ( ph  ->  ps ) )
42, 3eximii 1764 . 2  |-  E. x
( ph  ->  ps )
51, 419.36i 2099 1  |-  ( A. x ph  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481   F/wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-nf 1710
This theorem is referenced by:  spimvALT  2258  chvar  2262  cbv3  2265  setrec2fun  42439
  Copyright terms: Public domain W3C validator