Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssbr Structured version   Visualization version   Unicode version

Theorem ssbr 34008
Description: Subclass theorem for binary relation, in a more searchable form:  ( R  C_  S  ->  ( A R B  ->  A S B ) ). (Contributed by Peter Mazsa, 11-Nov-2019.)
Assertion
Ref Expression
ssbr  |-  ( A 
C_  B  ->  ( C A D  ->  C B D ) )

Proof of Theorem ssbr
StepHypRef Expression
1 ssel 3597 . 2  |-  ( A 
C_  B  ->  ( <. C ,  D >.  e.  A  ->  <. C ,  D >.  e.  B ) )
2 df-br 4654 . 2  |-  ( C A D  <->  <. C ,  D >.  e.  A )
3 df-br 4654 . 2  |-  ( C B D  <->  <. C ,  D >.  e.  B )
41, 2, 33imtr4g 285 1  |-  ( A 
C_  B  ->  ( C A D  ->  C B D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990    C_ wss 3574   <.cop 4183   class class class wbr 4653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-in 3581  df-ss 3588  df-br 4654
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator