MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrabeq Structured version   Visualization version   Unicode version

Theorem ssrabeq 3689
Description: If the restricting class of a restricted class abstraction is a subset of this restricted class abstraction, it is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
Assertion
Ref Expression
ssrabeq  |-  ( V 
C_  { x  e.  V  |  ph }  <->  V  =  { x  e.  V  |  ph }
)
Distinct variable group:    x, V
Allowed substitution hint:    ph( x)

Proof of Theorem ssrabeq
StepHypRef Expression
1 ssrab2 3687 . . 3  |-  { x  e.  V  |  ph }  C_  V
21biantru 526 . 2  |-  ( V 
C_  { x  e.  V  |  ph }  <->  ( V  C_  { x  e.  V  |  ph }  /\  { x  e.  V  |  ph }  C_  V
) )
3 eqss 3618 . 2  |-  ( V  =  { x  e.  V  |  ph }  <->  ( V  C_  { x  e.  V  |  ph }  /\  { x  e.  V  |  ph }  C_  V
) )
42, 3bitr4i 267 1  |-  ( V 
C_  { x  e.  V  |  ph }  <->  V  =  { x  e.  V  |  ph }
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   {crab 2916    C_ wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-in 3581  df-ss 3588
This theorem is referenced by:  difrab0eq  4038
  Copyright terms: Public domain W3C validator