MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl213anc Structured version   Visualization version   Unicode version

Theorem syl213anc 1345
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl12anc.1  |-  ( ph  ->  ps )
syl12anc.2  |-  ( ph  ->  ch )
syl12anc.3  |-  ( ph  ->  th )
syl22anc.4  |-  ( ph  ->  ta )
syl23anc.5  |-  ( ph  ->  et )
syl33anc.6  |-  ( ph  ->  ze )
syl213anc.7  |-  ( ( ( ps  /\  ch )  /\  th  /\  ( ta  /\  et  /\  ze ) )  ->  si )
Assertion
Ref Expression
syl213anc  |-  ( ph  ->  si )

Proof of Theorem syl213anc
StepHypRef Expression
1 syl12anc.1 . . 3  |-  ( ph  ->  ps )
2 syl12anc.2 . . 3  |-  ( ph  ->  ch )
31, 2jca 554 . 2  |-  ( ph  ->  ( ps  /\  ch ) )
4 syl12anc.3 . 2  |-  ( ph  ->  th )
5 syl22anc.4 . 2  |-  ( ph  ->  ta )
6 syl23anc.5 . 2  |-  ( ph  ->  et )
7 syl33anc.6 . 2  |-  ( ph  ->  ze )
8 syl213anc.7 . 2  |-  ( ( ( ps  /\  ch )  /\  th  /\  ( ta  /\  et  /\  ze ) )  ->  si )
93, 4, 5, 6, 7, 8syl113anc 1338 1  |-  ( ph  ->  si )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1039
This theorem is referenced by:  syl223anc  1352  decpmatmul  20577  nosupbnd1lem5  31858
  Copyright terms: Public domain W3C validator