MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  decpmatmul Structured version   Visualization version   Unicode version

Theorem decpmatmul 20577
Description: The matrix consisting of the coefficients in the polynomial entries of the product of two polynomial matrices is a sum of products of the matrices consisting of the coefficients in the polynomial entries of the polynomial matrices for the same power. (Contributed by AV, 21-Oct-2019.) (Revised by AV, 3-Dec-2019.)
Hypotheses
Ref Expression
decpmatmul.p  |-  P  =  (Poly1 `  R )
decpmatmul.c  |-  C  =  ( N Mat  P )
decpmatmul.b  |-  B  =  ( Base `  C
)
decpmatmul.a  |-  A  =  ( N Mat  R )
Assertion
Ref Expression
decpmatmul  |-  ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  ->  ( ( U ( .r `  C
) W ) decompPMat  K )  =  ( A  gsumg  ( k  e.  ( 0 ... K )  |->  ( ( U decompPMat  k ) ( .r
`  A ) ( W decompPMat  ( K  -  k
) ) ) ) ) )
Distinct variable groups:    B, k    k, K    k, N    P, k    R, k    U, k   
k, W    A, k
Allowed substitution hint:    C( k)

Proof of Theorem decpmatmul
Dummy variables  t 
i  j  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2623 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( x  e.  N ,  y  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... K ) 
|->  ( R  gsumg  ( t  e.  N  |->  ( ( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) ) ) ) ) ) )  =  ( x  e.  N , 
y  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... K ) 
|->  ( R  gsumg  ( t  e.  N  |->  ( ( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) ) ) ) ) ) ) )
2 oveq1 6657 . . . . . . . . . . 11  |-  ( x  =  i  ->  (
x ( U decompPMat  k ) t )  =  ( i ( U decompPMat  k ) t ) )
3 oveq2 6658 . . . . . . . . . . 11  |-  ( y  =  j  ->  (
t ( W decompPMat  ( K  -  k ) ) y )  =  ( t ( W decompPMat  ( K  -  k ) ) j ) )
42, 3oveqan12d 6669 . . . . . . . . . 10  |-  ( ( x  =  i  /\  y  =  j )  ->  ( ( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) )  =  ( ( i ( U decompPMat  k ) t ) ( .r
`  R ) ( t ( W decompPMat  ( K  -  k ) ) j ) ) )
54mpteq2dv 4745 . . . . . . . . 9  |-  ( ( x  =  i  /\  y  =  j )  ->  ( t  e.  N  |->  ( ( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) ) )  =  ( t  e.  N  |->  ( ( i ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) j ) ) ) )
65oveq2d 6666 . . . . . . . 8  |-  ( ( x  =  i  /\  y  =  j )  ->  ( R  gsumg  ( t  e.  N  |->  ( ( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) ) ) )  =  ( R  gsumg  ( t  e.  N  |->  ( ( i ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) j ) ) ) ) )
76mpteq2dv 4745 . . . . . . 7  |-  ( ( x  =  i  /\  y  =  j )  ->  ( k  e.  ( 0 ... K ) 
|->  ( R  gsumg  ( t  e.  N  |->  ( ( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) ) ) ) )  =  ( k  e.  ( 0 ... K
)  |->  ( R  gsumg  ( t  e.  N  |->  ( ( i ( U decompPMat  k ) t ) ( .r
`  R ) ( t ( W decompPMat  ( K  -  k ) ) j ) ) ) ) ) )
87oveq2d 6666 . . . . . 6  |-  ( ( x  =  i  /\  y  =  j )  ->  ( R  gsumg  ( k  e.  ( 0 ... K ) 
|->  ( R  gsumg  ( t  e.  N  |->  ( ( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) ) ) ) ) )  =  ( R 
gsumg  ( k  e.  ( 0 ... K ) 
|->  ( R  gsumg  ( t  e.  N  |->  ( ( i ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) j ) ) ) ) ) ) )
98adantl 482 . . . . 5  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  ( x  =  i  /\  y  =  j ) )  ->  ( R  gsumg  ( k  e.  ( 0 ... K )  |->  ( R 
gsumg  ( t  e.  N  |->  ( ( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) ) ) ) ) )  =  ( R 
gsumg  ( k  e.  ( 0 ... K ) 
|->  ( R  gsumg  ( t  e.  N  |->  ( ( i ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) j ) ) ) ) ) ) )
10 simprl 794 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
i  e.  N )
11 simprr 796 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
j  e.  N )
12 ovexd 6680 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( R  gsumg  ( k  e.  ( 0 ... K ) 
|->  ( R  gsumg  ( t  e.  N  |->  ( ( i ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) j ) ) ) ) ) )  e.  _V )
131, 9, 10, 11, 12ovmpt2d 6788 . . . 4  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( i ( x  e.  N ,  y  e.  N  |->  ( R 
gsumg  ( k  e.  ( 0 ... K ) 
|->  ( R  gsumg  ( t  e.  N  |->  ( ( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) ) ) ) ) ) ) j )  =  ( R  gsumg  ( k  e.  ( 0 ... K )  |->  ( R 
gsumg  ( t  e.  N  |->  ( ( i ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) j ) ) ) ) ) ) )
14 decpmatmul.c . . . . . . . . . . . . . . . . . . . 20  |-  C  =  ( N Mat  P )
15 decpmatmul.b . . . . . . . . . . . . . . . . . . . 20  |-  B  =  ( Base `  C
)
1614, 15matrcl 20218 . . . . . . . . . . . . . . . . . . 19  |-  ( U  e.  B  ->  ( N  e.  Fin  /\  P  e.  _V ) )
1716simpld 475 . . . . . . . . . . . . . . . . . 18  |-  ( U  e.  B  ->  N  e.  Fin )
1817adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  B  /\  W  e.  B )  ->  N  e.  Fin )
1918anim2i 593 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )
)  ->  ( R  e.  Ring  /\  N  e.  Fin ) )
2019ancomd 467 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )
)  ->  ( N  e.  Fin  /\  R  e. 
Ring ) )
21203adant3 1081 . . . . . . . . . . . . . 14  |-  ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  ->  ( N  e. 
Fin  /\  R  e.  Ring ) )
22 decpmatmul.a . . . . . . . . . . . . . . 15  |-  A  =  ( N Mat  R )
23 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( R maMul  <. N ,  N ,  N >. )  =  ( R maMul  <. N ,  N ,  N >. )
2422, 23matmulr 20244 . . . . . . . . . . . . . 14  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( R maMul  <. N ,  N ,  N >. )  =  ( .r `  A ) )
2521, 24syl 17 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  ->  ( R maMul  <. N ,  N ,  N >. )  =  ( .r `  A ) )
2625adantr 481 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( R maMul  <. N ,  N ,  N >. )  =  ( .r `  A ) )
2726adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  ( R maMul  <. N ,  N ,  N >. )  =  ( .r `  A ) )
2827eqcomd 2628 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  ( .r `  A )  =  ( R maMul  <. N ,  N ,  N >. ) )
2928oveqd 6667 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  (
( U decompPMat  k ) ( .r `  A ) ( W decompPMat  ( K  -  k ) ) )  =  ( ( U decompPMat  k ) ( R maMul  <. N ,  N ,  N >. ) ( W decompPMat  ( K  -  k
) ) ) )
30 eqid 2622 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  R )
31 eqid 2622 . . . . . . . . . 10  |-  ( .r
`  R )  =  ( .r `  R
)
32 simp1 1061 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  ->  R  e.  Ring )
3332adantr 481 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  ->  R  e.  Ring )
3433adantr 481 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  R  e.  Ring )
3521simpld 475 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  ->  N  e.  Fin )
3635adantr 481 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  ->  N  e.  Fin )
3736adantr 481 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  N  e.  Fin )
38 simpl2l 1114 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  ->  U  e.  B )
3938adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  U  e.  B )
40 elfznn0 12433 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... K )  ->  k  e.  NN0 )
4140adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  k  e.  NN0 )
4234, 39, 413jca 1242 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  ( R  e.  Ring  /\  U  e.  B  /\  k  e.  NN0 ) )
43 decpmatmul.p . . . . . . . . . . . . 13  |-  P  =  (Poly1 `  R )
44 eqid 2622 . . . . . . . . . . . . 13  |-  ( Base `  A )  =  (
Base `  A )
4543, 14, 15, 22, 44decpmatcl 20572 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  U  e.  B  /\  k  e.  NN0 )  ->  ( U decompPMat  k )  e.  (
Base `  A )
)
4642, 45syl 17 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  ( U decompPMat  k )  e.  (
Base `  A )
)
4722, 30, 44matbas2i 20228 . . . . . . . . . . 11  |-  ( ( U decompPMat  k )  e.  (
Base `  A )  ->  ( U decompPMat  k )  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) )
4846, 47syl 17 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  ( U decompPMat  k )  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) )
49 simpl2r 1115 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  ->  W  e.  B )
5049adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  W  e.  B )
51 fznn0sub 12373 . . . . . . . . . . . . . 14  |-  ( k  e.  ( 0 ... K )  ->  ( K  -  k )  e.  NN0 )
5251adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  ( K  -  k )  e.  NN0 )
5334, 50, 523jca 1242 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  ( R  e.  Ring  /\  W  e.  B  /\  ( K  -  k )  e.  NN0 ) )
5443, 14, 15, 22, 44decpmatcl 20572 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  W  e.  B  /\  ( K  -  k )  e.  NN0 )  ->  ( W decompPMat  ( K  -  k
) )  e.  (
Base `  A )
)
5553, 54syl 17 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  ( W decompPMat  ( K  -  k
) )  e.  (
Base `  A )
)
5622, 30, 44matbas2i 20228 . . . . . . . . . . 11  |-  ( ( W decompPMat  ( K  -  k
) )  e.  (
Base `  A )  ->  ( W decompPMat  ( K  -  k ) )  e.  ( ( Base `  R )  ^m  ( N  X.  N ) ) )
5755, 56syl 17 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  ( W decompPMat  ( K  -  k
) )  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) )
5823, 30, 31, 34, 37, 37, 37, 48, 57mamuval 20192 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  (
( U decompPMat  k ) ( R maMul  <. N ,  N ,  N >. ) ( W decompPMat  ( K  -  k
) ) )  =  ( x  e.  N ,  y  e.  N  |->  ( R  gsumg  ( t  e.  N  |->  ( ( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) ) ) ) ) )
5929, 58eqtrd 2656 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  (
( U decompPMat  k ) ( .r `  A ) ( W decompPMat  ( K  -  k ) ) )  =  ( x  e.  N ,  y  e.  N  |->  ( R 
gsumg  ( t  e.  N  |->  ( ( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) ) ) ) ) )
6059mpteq2dva 4744 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( k  e.  ( 0 ... K ) 
|->  ( ( U decompPMat  k ) ( .r `  A
) ( W decompPMat  ( K  -  k ) ) ) )  =  ( k  e.  ( 0 ... K )  |->  ( x  e.  N , 
y  e.  N  |->  ( R  gsumg  ( t  e.  N  |->  ( ( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) ) ) ) ) ) )
6160oveq2d 6666 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( A  gsumg  ( k  e.  ( 0 ... K ) 
|->  ( ( U decompPMat  k ) ( .r `  A
) ( W decompPMat  ( K  -  k ) ) ) ) )  =  ( A  gsumg  ( k  e.  ( 0 ... K ) 
|->  ( x  e.  N ,  y  e.  N  |->  ( R  gsumg  ( t  e.  N  |->  ( ( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) ) ) ) ) ) ) )
62 eqid 2622 . . . . . . 7  |-  ( 0g
`  A )  =  ( 0g `  A
)
63 ovexd 6680 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( 0 ... K
)  e.  _V )
64 ringcmn 18581 . . . . . . . . . . . . 13  |-  ( R  e.  Ring  ->  R  e. CMnd
)
6532, 64syl 17 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  ->  R  e. CMnd )
6665adantr 481 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  ->  R  e. CMnd )
6766adantr 481 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  R  e. CMnd )
68673ad2ant1 1082 . . . . . . . . 9  |-  ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  x  e.  N  /\  y  e.  N
)  ->  R  e. CMnd )
69373ad2ant1 1082 . . . . . . . . 9  |-  ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  x  e.  N  /\  y  e.  N
)  ->  N  e.  Fin )
70343ad2ant1 1082 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  x  e.  N  /\  y  e.  N
)  ->  R  e.  Ring )
7170adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  x  e.  N  /\  y  e.  N
)  /\  t  e.  N )  ->  R  e.  Ring )
72 simpl2 1065 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  x  e.  N  /\  y  e.  N
)  /\  t  e.  N )  ->  x  e.  N )
73 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  x  e.  N  /\  y  e.  N
)  /\  t  e.  N )  ->  t  e.  N )
74423ad2ant1 1082 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  x  e.  N  /\  y  e.  N
)  ->  ( R  e.  Ring  /\  U  e.  B  /\  k  e.  NN0 ) )
7574adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  x  e.  N  /\  y  e.  N
)  /\  t  e.  N )  ->  ( R  e.  Ring  /\  U  e.  B  /\  k  e.  NN0 ) )
7675, 45syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  x  e.  N  /\  y  e.  N
)  /\  t  e.  N )  ->  ( U decompPMat  k )  e.  (
Base `  A )
)
7722, 30, 44, 72, 73, 76matecld 20232 . . . . . . . . . . 11  |-  ( ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  x  e.  N  /\  y  e.  N
)  /\  t  e.  N )  ->  (
x ( U decompPMat  k ) t )  e.  (
Base `  R )
)
78 simpl3 1066 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  x  e.  N  /\  y  e.  N
)  /\  t  e.  N )  ->  y  e.  N )
79553ad2ant1 1082 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  x  e.  N  /\  y  e.  N
)  ->  ( W decompPMat  ( K  -  k ) )  e.  ( Base `  A ) )
8079adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  x  e.  N  /\  y  e.  N
)  /\  t  e.  N )  ->  ( W decompPMat  ( K  -  k
) )  e.  (
Base `  A )
)
8122, 30, 44, 73, 78, 80matecld 20232 . . . . . . . . . . 11  |-  ( ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  x  e.  N  /\  y  e.  N
)  /\  t  e.  N )  ->  (
t ( W decompPMat  ( K  -  k ) ) y )  e.  (
Base `  R )
)
8230, 31ringcl 18561 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  (
x ( U decompPMat  k ) t )  e.  (
Base `  R )  /\  ( t ( W decompPMat  ( K  -  k
) ) y )  e.  ( Base `  R
) )  ->  (
( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) )  e.  ( Base `  R ) )
8371, 77, 81, 82syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  x  e.  N  /\  y  e.  N
)  /\  t  e.  N )  ->  (
( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) )  e.  ( Base `  R ) )
8483ralrimiva 2966 . . . . . . . . 9  |-  ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  x  e.  N  /\  y  e.  N
)  ->  A. t  e.  N  ( (
x ( U decompPMat  k ) t ) ( .r
`  R ) ( t ( W decompPMat  ( K  -  k ) ) y ) )  e.  ( Base `  R
) )
8530, 68, 69, 84gsummptcl 18366 . . . . . . . 8  |-  ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  x  e.  N  /\  y  e.  N
)  ->  ( R  gsumg  ( t  e.  N  |->  ( ( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) ) ) )  e.  ( Base `  R
) )
8622, 30, 44, 37, 34, 85matbas2d 20229 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  (
x  e.  N , 
y  e.  N  |->  ( R  gsumg  ( t  e.  N  |->  ( ( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) ) ) ) )  e.  ( Base `  A
) )
87 eqid 2622 . . . . . . . 8  |-  ( k  e.  ( 0 ... K )  |->  ( x  e.  N ,  y  e.  N  |->  ( R 
gsumg  ( t  e.  N  |->  ( ( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) ) ) ) ) )  =  ( k  e.  ( 0 ... K )  |->  ( x  e.  N ,  y  e.  N  |->  ( R 
gsumg  ( t  e.  N  |->  ( ( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) ) ) ) ) )
88 fzfid 12772 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( 0 ... K
)  e.  Fin )
89 simpl 473 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  Fin  /\  P  e.  _V )  ->  N  e.  Fin )
9089, 89jca 554 . . . . . . . . . . . . . 14  |-  ( ( N  e.  Fin  /\  P  e.  _V )  ->  ( N  e.  Fin  /\  N  e.  Fin )
)
9116, 90syl 17 . . . . . . . . . . . . 13  |-  ( U  e.  B  ->  ( N  e.  Fin  /\  N  e.  Fin ) )
9291adantr 481 . . . . . . . . . . . 12  |-  ( ( U  e.  B  /\  W  e.  B )  ->  ( N  e.  Fin  /\  N  e.  Fin )
)
93923ad2ant2 1083 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  ->  ( N  e. 
Fin  /\  N  e.  Fin ) )
9493adantr 481 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( N  e.  Fin  /\  N  e.  Fin )
)
9594adantr 481 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  ( N  e.  Fin  /\  N  e.  Fin ) )
96 mpt2exga 7246 . . . . . . . . 9  |-  ( ( N  e.  Fin  /\  N  e.  Fin )  ->  ( x  e.  N ,  y  e.  N  |->  ( R  gsumg  ( t  e.  N  |->  ( ( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) ) ) ) )  e.  _V )
9795, 96syl 17 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  (
x  e.  N , 
y  e.  N  |->  ( R  gsumg  ( t  e.  N  |->  ( ( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) ) ) ) )  e.  _V )
98 fvexd 6203 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( 0g `  A
)  e.  _V )
9987, 88, 97, 98fsuppmptdm 8286 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( k  e.  ( 0 ... K ) 
|->  ( x  e.  N ,  y  e.  N  |->  ( R  gsumg  ( t  e.  N  |->  ( ( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) ) ) ) ) ) finSupp  ( 0g `  A ) )
10022, 44, 62, 36, 63, 33, 86, 99matgsum 20243 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( A  gsumg  ( k  e.  ( 0 ... K ) 
|->  ( x  e.  N ,  y  e.  N  |->  ( R  gsumg  ( t  e.  N  |->  ( ( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) ) ) ) ) ) )  =  ( x  e.  N , 
y  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... K ) 
|->  ( R  gsumg  ( t  e.  N  |->  ( ( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) ) ) ) ) ) ) )
10161, 100eqtrd 2656 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( A  gsumg  ( k  e.  ( 0 ... K ) 
|->  ( ( U decompPMat  k ) ( .r `  A
) ( W decompPMat  ( K  -  k ) ) ) ) )  =  ( x  e.  N ,  y  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... K ) 
|->  ( R  gsumg  ( t  e.  N  |->  ( ( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) ) ) ) ) ) ) )
102101oveqd 6667 . . . 4  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( i ( A 
gsumg  ( k  e.  ( 0 ... K ) 
|->  ( ( U decompPMat  k ) ( .r `  A
) ( W decompPMat  ( K  -  k ) ) ) ) ) j )  =  ( i ( x  e.  N ,  y  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... K ) 
|->  ( R  gsumg  ( t  e.  N  |->  ( ( x ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) y ) ) ) ) ) ) ) j ) )
103 simpl2 1065 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( U  e.  B  /\  W  e.  B
) )
104 simpl3 1066 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  ->  K  e.  NN0 )
10543, 14, 15decpmatmullem 20576 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  ( U  e.  B  /\  W  e.  B
)  /\  ( i  e.  N  /\  j  e.  N  /\  K  e. 
NN0 ) )  -> 
( i ( ( U ( .r `  C ) W ) decompPMat  K ) j )  =  ( R  gsumg  ( t  e.  N  |->  ( R 
gsumg  ( k  e.  ( 0 ... K ) 
|->  ( ( (coe1 `  (
i U t ) ) `  k ) ( .r `  R
) ( (coe1 `  (
t W j ) ) `  ( K  -  k ) ) ) ) ) ) ) )
10636, 33, 103, 10, 11, 104, 105syl213anc 1345 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( i ( ( U ( .r `  C ) W ) decompPMat  K ) j )  =  ( R  gsumg  ( t  e.  N  |->  ( R 
gsumg  ( k  e.  ( 0 ... K ) 
|->  ( ( (coe1 `  (
i U t ) ) `  k ) ( .r `  R
) ( (coe1 `  (
t W j ) ) `  ( K  -  k ) ) ) ) ) ) ) )
107 simpll1 1100 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  ( t  e.  N  /\  k  e.  ( 0 ... K
) ) )  ->  R  e.  Ring )
108 simplrl 800 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  ( t  e.  N  /\  k  e.  ( 0 ... K
) ) )  -> 
i  e.  N )
109 simprl 794 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  ( t  e.  N  /\  k  e.  ( 0 ... K
) ) )  -> 
t  e.  N )
11015eleq2i 2693 . . . . . . . . . . . . . 14  |-  ( U  e.  B  <->  U  e.  ( Base `  C )
)
111110biimpi 206 . . . . . . . . . . . . 13  |-  ( U  e.  B  ->  U  e.  ( Base `  C
) )
112111adantr 481 . . . . . . . . . . . 12  |-  ( ( U  e.  B  /\  W  e.  B )  ->  U  e.  ( Base `  C ) )
1131123ad2ant2 1083 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  ->  U  e.  (
Base `  C )
)
114113adantr 481 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  ->  U  e.  ( Base `  C ) )
115114adantr 481 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  ( t  e.  N  /\  k  e.  ( 0 ... K
) ) )  ->  U  e.  ( Base `  C ) )
116 eqid 2622 . . . . . . . . . 10  |-  ( Base `  P )  =  (
Base `  P )
11714, 116matecl 20231 . . . . . . . . 9  |-  ( ( i  e.  N  /\  t  e.  N  /\  U  e.  ( Base `  C ) )  -> 
( i U t )  e.  ( Base `  P ) )
118108, 109, 115, 117syl3anc 1326 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  ( t  e.  N  /\  k  e.  ( 0 ... K
) ) )  -> 
( i U t )  e.  ( Base `  P ) )
11940ad2antll 765 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  ( t  e.  N  /\  k  e.  ( 0 ... K
) ) )  -> 
k  e.  NN0 )
120 eqid 2622 . . . . . . . . 9  |-  (coe1 `  (
i U t ) )  =  (coe1 `  (
i U t ) )
121120, 116, 43, 30coe1fvalcl 19582 . . . . . . . 8  |-  ( ( ( i U t )  e.  ( Base `  P )  /\  k  e.  NN0 )  ->  (
(coe1 `  ( i U t ) ) `  k )  e.  (
Base `  R )
)
122118, 119, 121syl2anc 693 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  ( t  e.  N  /\  k  e.  ( 0 ... K
) ) )  -> 
( (coe1 `  ( i U t ) ) `  k )  e.  (
Base `  R )
)
123 simplrr 801 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  ( t  e.  N  /\  k  e.  ( 0 ... K
) ) )  -> 
j  e.  N )
12449adantr 481 . . . . . . . . 9  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  ( t  e.  N  /\  k  e.  ( 0 ... K
) ) )  ->  W  e.  B )
12514, 116, 15, 109, 123, 124matecld 20232 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  ( t  e.  N  /\  k  e.  ( 0 ... K
) ) )  -> 
( t W j )  e.  ( Base `  P ) )
12651ad2antll 765 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  ( t  e.  N  /\  k  e.  ( 0 ... K
) ) )  -> 
( K  -  k
)  e.  NN0 )
127 eqid 2622 . . . . . . . . 9  |-  (coe1 `  (
t W j ) )  =  (coe1 `  (
t W j ) )
128127, 116, 43, 30coe1fvalcl 19582 . . . . . . . 8  |-  ( ( ( t W j )  e.  ( Base `  P )  /\  ( K  -  k )  e.  NN0 )  ->  (
(coe1 `  ( t W j ) ) `  ( K  -  k
) )  e.  (
Base `  R )
)
129125, 126, 128syl2anc 693 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  ( t  e.  N  /\  k  e.  ( 0 ... K
) ) )  -> 
( (coe1 `  ( t W j ) ) `  ( K  -  k
) )  e.  (
Base `  R )
)
13030, 31ringcl 18561 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
(coe1 `  ( i U t ) ) `  k )  e.  (
Base `  R )  /\  ( (coe1 `  ( t W j ) ) `  ( K  -  k
) )  e.  (
Base `  R )
)  ->  ( (
(coe1 `  ( i U t ) ) `  k ) ( .r
`  R ) ( (coe1 `  ( t W j ) ) `  ( K  -  k
) ) )  e.  ( Base `  R
) )
131107, 122, 129, 130syl3anc 1326 . . . . . 6  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  ( t  e.  N  /\  k  e.  ( 0 ... K
) ) )  -> 
( ( (coe1 `  (
i U t ) ) `  k ) ( .r `  R
) ( (coe1 `  (
t W j ) ) `  ( K  -  k ) ) )  e.  ( Base `  R ) )
13230, 66, 36, 88, 131gsumcom3fi 20206 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( R  gsumg  ( t  e.  N  |->  ( R  gsumg  ( k  e.  ( 0 ... K ) 
|->  ( ( (coe1 `  (
i U t ) ) `  k ) ( .r `  R
) ( (coe1 `  (
t W j ) ) `  ( K  -  k ) ) ) ) ) ) )  =  ( R 
gsumg  ( k  e.  ( 0 ... K ) 
|->  ( R  gsumg  ( t  e.  N  |->  ( ( (coe1 `  (
i U t ) ) `  k ) ( .r `  R
) ( (coe1 `  (
t W j ) ) `  ( K  -  k ) ) ) ) ) ) ) )
13342adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  t  e.  N
)  ->  ( R  e.  Ring  /\  U  e.  B  /\  k  e.  NN0 ) )
13410adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  i  e.  N )
135134anim1i 592 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  t  e.  N
)  ->  ( i  e.  N  /\  t  e.  N ) )
13643, 14, 15decpmate 20571 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Ring  /\  U  e.  B  /\  k  e.  NN0 )  /\  ( i  e.  N  /\  t  e.  N
) )  ->  (
i ( U decompPMat  k ) t )  =  ( (coe1 `  ( i U t ) ) `  k ) )
137133, 135, 136syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  t  e.  N
)  ->  ( i
( U decompPMat  k ) t )  =  ( (coe1 `  ( i U t ) ) `  k
) )
13853adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  t  e.  N
)  ->  ( R  e.  Ring  /\  W  e.  B  /\  ( K  -  k )  e.  NN0 ) )
139 simplrr 801 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  j  e.  N )
140139anim1i 592 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  t  e.  N
)  ->  ( j  e.  N  /\  t  e.  N ) )
141140ancomd 467 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  t  e.  N
)  ->  ( t  e.  N  /\  j  e.  N ) )
14243, 14, 15decpmate 20571 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Ring  /\  W  e.  B  /\  ( K  -  k
)  e.  NN0 )  /\  ( t  e.  N  /\  j  e.  N
) )  ->  (
t ( W decompPMat  ( K  -  k ) ) j )  =  ( (coe1 `  ( t W j ) ) `  ( K  -  k
) ) )
143138, 141, 142syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  t  e.  N
)  ->  ( t
( W decompPMat  ( K  -  k ) ) j )  =  ( (coe1 `  ( t W j ) ) `  ( K  -  k )
) )
144137, 143oveq12d 6668 . . . . . . . . . 10  |-  ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  t  e.  N
)  ->  ( (
i ( U decompPMat  k ) t ) ( .r
`  R ) ( t ( W decompPMat  ( K  -  k ) ) j ) )  =  ( ( (coe1 `  (
i U t ) ) `  k ) ( .r `  R
) ( (coe1 `  (
t W j ) ) `  ( K  -  k ) ) ) )
145144eqcomd 2628 . . . . . . . . 9  |-  ( ( ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  /\  k  e.  ( 0 ... K ) )  /\  t  e.  N
)  ->  ( (
(coe1 `  ( i U t ) ) `  k ) ( .r
`  R ) ( (coe1 `  ( t W j ) ) `  ( K  -  k
) ) )  =  ( ( i ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) j ) ) )
146145mpteq2dva 4744 . . . . . . . 8  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  (
t  e.  N  |->  ( ( (coe1 `  ( i U t ) ) `  k ) ( .r
`  R ) ( (coe1 `  ( t W j ) ) `  ( K  -  k
) ) ) )  =  ( t  e.  N  |->  ( ( i ( U decompPMat  k )
t ) ( .r
`  R ) ( t ( W decompPMat  ( K  -  k ) ) j ) ) ) )
147146oveq2d 6666 . . . . . . 7  |-  ( ( ( ( R  e. 
Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  /\  (
i  e.  N  /\  j  e.  N )
)  /\  k  e.  ( 0 ... K
) )  ->  ( R  gsumg  ( t  e.  N  |->  ( ( (coe1 `  (
i U t ) ) `  k ) ( .r `  R
) ( (coe1 `  (
t W j ) ) `  ( K  -  k ) ) ) ) )  =  ( R  gsumg  ( t  e.  N  |->  ( ( i ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) j ) ) ) ) )
148147mpteq2dva 4744 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( k  e.  ( 0 ... K ) 
|->  ( R  gsumg  ( t  e.  N  |->  ( ( (coe1 `  (
i U t ) ) `  k ) ( .r `  R
) ( (coe1 `  (
t W j ) ) `  ( K  -  k ) ) ) ) ) )  =  ( k  e.  ( 0 ... K
)  |->  ( R  gsumg  ( t  e.  N  |->  ( ( i ( U decompPMat  k ) t ) ( .r
`  R ) ( t ( W decompPMat  ( K  -  k ) ) j ) ) ) ) ) )
149148oveq2d 6666 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( R  gsumg  ( k  e.  ( 0 ... K ) 
|->  ( R  gsumg  ( t  e.  N  |->  ( ( (coe1 `  (
i U t ) ) `  k ) ( .r `  R
) ( (coe1 `  (
t W j ) ) `  ( K  -  k ) ) ) ) ) ) )  =  ( R 
gsumg  ( k  e.  ( 0 ... K ) 
|->  ( R  gsumg  ( t  e.  N  |->  ( ( i ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) j ) ) ) ) ) ) )
150106, 132, 1493eqtrd 2660 . . . 4  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( i ( ( U ( .r `  C ) W ) decompPMat  K ) j )  =  ( R  gsumg  ( k  e.  ( 0 ... K )  |->  ( R 
gsumg  ( t  e.  N  |->  ( ( i ( U decompPMat  k ) t ) ( .r `  R
) ( t ( W decompPMat  ( K  -  k
) ) j ) ) ) ) ) ) )
15113, 102, 1503eqtr4rd 2667 . . 3  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  ( i  e.  N  /\  j  e.  N ) )  -> 
( i ( ( U ( .r `  C ) W ) decompPMat  K ) j )  =  ( i ( A  gsumg  ( k  e.  ( 0 ... K ) 
|->  ( ( U decompPMat  k ) ( .r `  A
) ( W decompPMat  ( K  -  k ) ) ) ) ) j ) )
152151ralrimivva 2971 . 2  |-  ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  ->  A. i  e.  N  A. j  e.  N  ( i ( ( U ( .r `  C ) W ) decompPMat  K ) j )  =  ( i ( A  gsumg  ( k  e.  ( 0 ... K ) 
|->  ( ( U decompPMat  k ) ( .r `  A
) ( W decompPMat  ( K  -  k ) ) ) ) ) j ) )
15343, 14pmatring 20498 . . . . . . 7  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  C  e.  Ring )
15420, 153syl 17 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )
)  ->  C  e.  Ring )
155 simprl 794 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )
)  ->  U  e.  B )
156 simprr 796 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )
)  ->  W  e.  B )
157 eqid 2622 . . . . . . 7  |-  ( .r
`  C )  =  ( .r `  C
)
15815, 157ringcl 18561 . . . . . 6  |-  ( ( C  e.  Ring  /\  U  e.  B  /\  W  e.  B )  ->  ( U ( .r `  C ) W )  e.  B )
159154, 155, 156, 158syl3anc 1326 . . . . 5  |-  ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )
)  ->  ( U
( .r `  C
) W )  e.  B )
1601593adant3 1081 . . . 4  |-  ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  ->  ( U ( .r `  C ) W )  e.  B
)
16143, 14, 15, 22, 44decpmatcl 20572 . . . 4  |-  ( ( R  e.  Ring  /\  ( U ( .r `  C ) W )  e.  B  /\  K  e.  NN0 )  ->  (
( U ( .r
`  C ) W ) decompPMat  K )  e.  (
Base `  A )
)
162160, 161syld3an2 1373 . . 3  |-  ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  ->  ( ( U ( .r `  C
) W ) decompPMat  K )  e.  ( Base `  A
) )
16322matring 20249 . . . . . 6  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  A  e.  Ring )
16421, 163syl 17 . . . . 5  |-  ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  ->  A  e.  Ring )
165 ringcmn 18581 . . . . 5  |-  ( A  e.  Ring  ->  A  e. CMnd
)
166164, 165syl 17 . . . 4  |-  ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  ->  A  e. CMnd )
167 fzfid 12772 . . . 4  |-  ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  ->  ( 0 ... K )  e.  Fin )
168164adantr 481 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  k  e.  ( 0 ... K
) )  ->  A  e.  Ring )
16932adantr 481 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  k  e.  ( 0 ... K
) )  ->  R  e.  Ring )
170 simpl2l 1114 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  k  e.  ( 0 ... K
) )  ->  U  e.  B )
17140adantl 482 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  k  e.  ( 0 ... K
) )  ->  k  e.  NN0 )
172169, 170, 1713jca 1242 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  k  e.  ( 0 ... K
) )  ->  ( R  e.  Ring  /\  U  e.  B  /\  k  e.  NN0 ) )
173172, 45syl 17 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  k  e.  ( 0 ... K
) )  ->  ( U decompPMat  k )  e.  (
Base `  A )
)
174 simpl2r 1115 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  k  e.  ( 0 ... K
) )  ->  W  e.  B )
17551adantl 482 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  k  e.  ( 0 ... K
) )  ->  ( K  -  k )  e.  NN0 )
176169, 174, 1753jca 1242 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  k  e.  ( 0 ... K
) )  ->  ( R  e.  Ring  /\  W  e.  B  /\  ( K  -  k )  e.  NN0 ) )
177176, 54syl 17 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  k  e.  ( 0 ... K
) )  ->  ( W decompPMat  ( K  -  k
) )  e.  (
Base `  A )
)
178 eqid 2622 . . . . . . 7  |-  ( .r
`  A )  =  ( .r `  A
)
17944, 178ringcl 18561 . . . . . 6  |-  ( ( A  e.  Ring  /\  ( U decompPMat  k )  e.  (
Base `  A )  /\  ( W decompPMat  ( K  -  k ) )  e.  ( Base `  A
) )  ->  (
( U decompPMat  k ) ( .r `  A ) ( W decompPMat  ( K  -  k ) ) )  e.  ( Base `  A ) )
180168, 173, 177, 179syl3anc 1326 . . . . 5  |-  ( ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B
)  /\  K  e.  NN0 )  /\  k  e.  ( 0 ... K
) )  ->  (
( U decompPMat  k ) ( .r `  A ) ( W decompPMat  ( K  -  k ) ) )  e.  ( Base `  A ) )
181180ralrimiva 2966 . . . 4  |-  ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  ->  A. k  e.  ( 0 ... K ) ( ( U decompPMat  k ) ( .r `  A
) ( W decompPMat  ( K  -  k ) ) )  e.  ( Base `  A ) )
18244, 166, 167, 181gsummptcl 18366 . . 3  |-  ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  ->  ( A  gsumg  ( k  e.  ( 0 ... K )  |->  ( ( U decompPMat  k ) ( .r
`  A ) ( W decompPMat  ( K  -  k
) ) ) ) )  e.  ( Base `  A ) )
18322, 44eqmat 20230 . . 3  |-  ( ( ( ( U ( .r `  C ) W ) decompPMat  K )  e.  ( Base `  A
)  /\  ( A  gsumg  ( k  e.  ( 0 ... K )  |->  ( ( U decompPMat  k )
( .r `  A
) ( W decompPMat  ( K  -  k ) ) ) ) )  e.  ( Base `  A
) )  ->  (
( ( U ( .r `  C ) W ) decompPMat  K )  =  ( A  gsumg  ( k  e.  ( 0 ... K )  |->  ( ( U decompPMat  k ) ( .r
`  A ) ( W decompPMat  ( K  -  k
) ) ) ) )  <->  A. i  e.  N  A. j  e.  N  ( i ( ( U ( .r `  C ) W ) decompPMat  K ) j )  =  ( i ( A  gsumg  ( k  e.  ( 0 ... K ) 
|->  ( ( U decompPMat  k ) ( .r `  A
) ( W decompPMat  ( K  -  k ) ) ) ) ) j ) ) )
184162, 182, 183syl2anc 693 . 2  |-  ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  ->  ( ( ( U ( .r `  C ) W ) decompPMat  K )  =  ( A  gsumg  ( k  e.  ( 0 ... K ) 
|->  ( ( U decompPMat  k ) ( .r `  A
) ( W decompPMat  ( K  -  k ) ) ) ) )  <->  A. i  e.  N  A. j  e.  N  ( i
( ( U ( .r `  C ) W ) decompPMat  K )
j )  =  ( i ( A  gsumg  ( k  e.  ( 0 ... K )  |->  ( ( U decompPMat  k ) ( .r
`  A ) ( W decompPMat  ( K  -  k
) ) ) ) ) j ) ) )
185152, 184mpbird 247 1  |-  ( ( R  e.  Ring  /\  ( U  e.  B  /\  W  e.  B )  /\  K  e.  NN0 )  ->  ( ( U ( .r `  C
) W ) decompPMat  K )  =  ( A  gsumg  ( k  e.  ( 0 ... K )  |->  ( ( U decompPMat  k ) ( .r
`  A ) ( W decompPMat  ( K  -  k
) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   <.cotp 4185    |-> cmpt 4729    X. cxp 5112   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^m cmap 7857   Fincfn 7955   0cc0 9936    - cmin 10266   NN0cn0 11292   ...cfz 12326   Basecbs 15857   .rcmulr 15942   0gc0g 16100    gsumg cgsu 16101  CMndccmn 18193   Ringcrg 18547  Poly1cpl1 19547  coe1cco1 19548   maMul cmmul 20189   Mat cmat 20213   decompPMat cdecpmat 20567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-gsum 16103  df-prds 16108  df-pws 16110  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778  df-lmod 18865  df-lss 18933  df-sra 19172  df-rgmod 19173  df-psr 19356  df-mpl 19358  df-opsr 19360  df-psr1 19550  df-ply1 19552  df-coe1 19553  df-dsmm 20076  df-frlm 20091  df-mamu 20190  df-mat 20214  df-decpmat 20568
This theorem is referenced by:  decpmatmulsumfsupp  20578  pm2mpmhmlem1  20623  pm2mpmhmlem2  20624
  Copyright terms: Public domain W3C validator