MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl232anc Structured version   Visualization version   Unicode version

Theorem syl232anc 1353
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl12anc.1  |-  ( ph  ->  ps )
syl12anc.2  |-  ( ph  ->  ch )
syl12anc.3  |-  ( ph  ->  th )
syl22anc.4  |-  ( ph  ->  ta )
syl23anc.5  |-  ( ph  ->  et )
syl33anc.6  |-  ( ph  ->  ze )
syl133anc.7  |-  ( ph  ->  si )
syl232anc.8  |-  ( ( ( ps  /\  ch )  /\  ( th  /\  ta  /\  et )  /\  ( ze  /\  si )
)  ->  rh )
Assertion
Ref Expression
syl232anc  |-  ( ph  ->  rh )

Proof of Theorem syl232anc
StepHypRef Expression
1 syl12anc.1 . 2  |-  ( ph  ->  ps )
2 syl12anc.2 . 2  |-  ( ph  ->  ch )
3 syl12anc.3 . 2  |-  ( ph  ->  th )
4 syl22anc.4 . 2  |-  ( ph  ->  ta )
5 syl23anc.5 . 2  |-  ( ph  ->  et )
6 syl33anc.6 . . 3  |-  ( ph  ->  ze )
7 syl133anc.7 . . 3  |-  ( ph  ->  si )
86, 7jca 554 . 2  |-  ( ph  ->  ( ze  /\  si ) )
9 syl232anc.8 . 2  |-  ( ( ( ps  /\  ch )  /\  ( th  /\  ta  /\  et )  /\  ( ze  /\  si )
)  ->  rh )
101, 2, 3, 4, 5, 8, 9syl231anc 1346 1  |-  ( ph  ->  rh )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1039
This theorem is referenced by:  ax5seg  25818  cdleme20d  35600  cdleme22cN  35630  cdleme27a  35655
  Copyright terms: Public domain W3C validator