MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax5seg Structured version   Visualization version   Unicode version

Theorem ax5seg 25818
Description: The five segment axiom. Take two triangles  A D C and  E H G, a point  B on  A C, and a point  F on  E G. If all corresponding line segments except for  C D and  G H are congruent, then so are  C D and  G H. Axiom A5 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 12-Jun-2013.)
Assertion
Ref Expression
ax5seg  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( ( A  =/= 
B  /\  B  Btwn  <. A ,  C >.  /\  F  Btwn  <. E ,  G >. )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )

Proof of Theorem ax5seg
Dummy variables  i 
j  t  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 12772 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
1 ... N )  e. 
Fin )
2 simpl21 1139 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  j  e.  ( 1 ... N
) )  ->  C  e.  ( EE `  N
) )
3 fveere 25781 . . . . . . . . . . . . 13  |-  ( ( C  e.  ( EE
`  N )  /\  j  e.  ( 1 ... N ) )  ->  ( C `  j )  e.  RR )
42, 3sylancom 701 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  j  e.  ( 1 ... N
) )  ->  ( C `  j )  e.  RR )
5 simpl22 1140 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  j  e.  ( 1 ... N
) )  ->  D  e.  ( EE `  N
) )
6 fveere 25781 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( EE
`  N )  /\  j  e.  ( 1 ... N ) )  ->  ( D `  j )  e.  RR )
75, 6sylancom 701 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  j  e.  ( 1 ... N
) )  ->  ( D `  j )  e.  RR )
84, 7resubcld 10458 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  j  e.  ( 1 ... N
) )  ->  (
( C `  j
)  -  ( D `
 j ) )  e.  RR )
98resqcld 13035 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  j  e.  ( 1 ... N
) )  ->  (
( ( C `  j )  -  ( D `  j )
) ^ 2 )  e.  RR )
101, 9fsumrecl 14465 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( C `  j )  -  ( D `  j ) ) ^
2 )  e.  RR )
1110recnd 10068 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( C `  j )  -  ( D `  j ) ) ^
2 )  e.  CC )
1211adantr 481 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( C `  j )  -  ( D `  j ) ) ^
2 )  e.  CC )
13 simpl32 1143 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  j  e.  ( 1 ... N
) )  ->  G  e.  ( EE `  N
) )
14 fveere 25781 . . . . . . . . . . . . 13  |-  ( ( G  e.  ( EE
`  N )  /\  j  e.  ( 1 ... N ) )  ->  ( G `  j )  e.  RR )
1513, 14sylancom 701 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  j  e.  ( 1 ... N
) )  ->  ( G `  j )  e.  RR )
16 simpl33 1144 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  j  e.  ( 1 ... N
) )  ->  H  e.  ( EE `  N
) )
17 fveere 25781 . . . . . . . . . . . . 13  |-  ( ( H  e.  ( EE
`  N )  /\  j  e.  ( 1 ... N ) )  ->  ( H `  j )  e.  RR )
1816, 17sylancom 701 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  j  e.  ( 1 ... N
) )  ->  ( H `  j )  e.  RR )
1915, 18resubcld 10458 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  j  e.  ( 1 ... N
) )  ->  (
( G `  j
)  -  ( H `
 j ) )  e.  RR )
2019resqcld 13035 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  j  e.  ( 1 ... N
) )  ->  (
( ( G `  j )  -  ( H `  j )
) ^ 2 )  e.  RR )
211, 20fsumrecl 14465 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( G `  j )  -  ( H `  j ) ) ^
2 )  e.  RR )
2221recnd 10068 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( G `  j )  -  ( H `  j ) ) ^
2 )  e.  CC )
2322adantr 481 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( G `  j )  -  ( H `  j ) ) ^
2 )  e.  CC )
24 0re 10040 . . . . . . . . . . . . 13  |-  0  e.  RR
25 1re 10039 . . . . . . . . . . . . 13  |-  1  e.  RR
2624, 25elicc2i 12239 . . . . . . . . . . . 12  |-  ( t  e.  ( 0 [,] 1 )  <->  ( t  e.  RR  /\  0  <_ 
t  /\  t  <_  1 ) )
2726simp1bi 1076 . . . . . . . . . . 11  |-  ( t  e.  ( 0 [,] 1 )  ->  t  e.  RR )
2827recnd 10068 . . . . . . . . . 10  |-  ( t  e.  ( 0 [,] 1 )  ->  t  e.  CC )
2928ad2antrr 762 . . . . . . . . 9  |-  ( ( ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  ->  t  e.  CC )
30293ad2ant1 1082 . . . . . . . 8  |-  ( ( ( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) )  ->  t  e.  CC )
3130adantl 482 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  t  e.  CC )
32 simpl11 1136 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  N  e.  NN )
33 simp12 1092 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  A  e.  ( EE `  N
) )
34 simp13 1093 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
35 simp21 1094 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  C  e.  ( EE `  N
) )
3633, 34, 353jca 1242 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) ) )
3736adantr 481 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
)  /\  C  e.  ( EE `  N ) ) )
38 simprrl 804 . . . . . . . . . 10  |-  ( ( ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  ->  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) ) )
39383ad2ant1 1082 . . . . . . . . 9  |-  ( ( ( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) )  ->  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) ) )
4039adantl 482 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) ) )
41 simp1rl 1126 . . . . . . . . 9  |-  ( ( ( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) )  ->  A  =/=  B )
4241adantl 482 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  A  =/=  B )
43 ax5seglem4 25812 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) ) )  /\  A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A  =/=  B )  ->  t  =/=  0 )
4432, 37, 40, 42, 43syl211anc 1332 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  t  =/=  0 )
45 simpr3r 1123 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  <. B ,  D >.Cgr <. F ,  H >. )
46 simpl13 1138 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  B  e.  ( EE `  N
) )
47 simpl22 1140 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  D  e.  ( EE `  N
) )
48 simpl31 1142 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  F  e.  ( EE `  N
) )
49 simpl33 1144 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  H  e.  ( EE `  N
) )
50 brcgr 25780 . . . . . . . . . . . 12  |-  ( ( ( B  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  H  e.  ( EE `  N
) ) )  -> 
( <. B ,  D >.Cgr
<. F ,  H >.  <->  sum_ j  e.  ( 1 ... N ) ( ( ( B `  j )  -  ( D `  j )
) ^ 2 )  =  sum_ j  e.  ( 1 ... N ) ( ( ( F `
 j )  -  ( H `  j ) ) ^ 2 ) ) )
5146, 47, 48, 49, 50syl22anc 1327 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  ( <. B ,  D >.Cgr <. F ,  H >.  <->  sum_ j  e.  ( 1 ... N ) ( ( ( B `  j )  -  ( D `  j )
) ^ 2 )  =  sum_ j  e.  ( 1 ... N ) ( ( ( F `
 j )  -  ( H `  j ) ) ^ 2 ) ) )
5245, 51mpbid 222 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( B `  j )  -  ( D `  j ) ) ^
2 )  =  sum_ j  e.  ( 1 ... N ) ( ( ( F `  j )  -  ( H `  j )
) ^ 2 ) )
53 simp23 1096 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  E  e.  ( EE `  N
) )
54 simp31 1097 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  F  e.  ( EE `  N
) )
55 simp32 1098 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  G  e.  ( EE `  N
) )
5653, 54, 553jca 1242 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  G  e.  ( EE `  N ) ) )
5736, 56jca 554 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  G  e.  ( EE `  N ) ) ) )
5857adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  (
( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  G  e.  ( EE `  N ) ) ) )
59 simpr1l 1118 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  (
t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) ) )
60 simprrr 805 . . . . . . . . . . . . . . . 16  |-  ( ( ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  ->  A. i  e.  ( 1 ... N
) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i )
)  +  ( s  x.  ( G `  i ) ) ) )
61603ad2ant1 1082 . . . . . . . . . . . . . . 15  |-  ( ( ( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) )  ->  A. i  e.  ( 1 ... N
) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i )
)  +  ( s  x.  ( G `  i ) ) ) )
6261adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  A. i  e.  ( 1 ... N
) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i )
)  +  ( s  x.  ( G `  i ) ) ) )
6340, 62jca 554 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) )
64 simpr2l 1120 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  <. A ,  B >.Cgr <. E ,  F >. )
65 simpr2r 1121 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  <. B ,  C >.Cgr <. F ,  G >. )
66 ax5seglem6 25814 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  G  e.  ( EE `  N ) ) ) )  /\  ( A  =/=  B  /\  ( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\  <. B ,  C >.Cgr
<. F ,  G >. ) )  ->  t  =  s )
6732, 58, 42, 59, 63, 64, 65, 66syl232anc 1353 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  t  =  s )
6867oveq2d 6666 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  (
1  -  t )  =  ( 1  -  s ) )
6956adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  G  e.  ( EE `  N ) ) )
70 ax5seglem3 25811 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  G  e.  ( EE `  N ) ) )  /\  (
( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\  <. B ,  C >.Cgr
<. F ,  G >. ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 )  =  sum_ j  e.  ( 1 ... N ) ( ( ( E `  j )  -  ( G `  j )
) ^ 2 ) )
7132, 37, 69, 59, 63, 64, 65, 70syl322anc 1354 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 )  =  sum_ j  e.  ( 1 ... N ) ( ( ( E `  j )  -  ( G `  j )
) ^ 2 ) )
7267, 71oveq12d 6668 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  (
t  x.  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 ) )  =  ( s  x.  sum_ j  e.  ( 1 ... N ) ( ( ( E `  j )  -  ( G `  j )
) ^ 2 ) ) )
73 simpr3l 1122 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  <. A ,  D >.Cgr <. E ,  H >. )
74 simpl12 1137 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  A  e.  ( EE `  N
) )
75 simpl23 1141 . . . . . . . . . . . . . 14  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  E  e.  ( EE `  N
) )
76 brcgr 25780 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( E  e.  ( EE `  N )  /\  H  e.  ( EE `  N
) ) )  -> 
( <. A ,  D >.Cgr
<. E ,  H >.  <->  sum_ j  e.  ( 1 ... N ) ( ( ( A `  j )  -  ( D `  j )
) ^ 2 )  =  sum_ j  e.  ( 1 ... N ) ( ( ( E `
 j )  -  ( H `  j ) ) ^ 2 ) ) )
7774, 47, 75, 49, 76syl22anc 1327 . . . . . . . . . . . . 13  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  ( <. A ,  D >.Cgr <. E ,  H >.  <->  sum_ j  e.  ( 1 ... N ) ( ( ( A `  j )  -  ( D `  j )
) ^ 2 )  =  sum_ j  e.  ( 1 ... N ) ( ( ( E `
 j )  -  ( H `  j ) ) ^ 2 ) ) )
7873, 77mpbid 222 . . . . . . . . . . . 12  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( D `  j ) ) ^
2 )  =  sum_ j  e.  ( 1 ... N ) ( ( ( E `  j )  -  ( H `  j )
) ^ 2 ) )
7972, 78oveq12d 6668 . . . . . . . . . . 11  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  (
( t  x.  sum_ j  e.  ( 1 ... N ) ( ( ( A `  j )  -  ( C `  j )
) ^ 2 ) )  -  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( D `  j ) ) ^
2 ) )  =  ( ( s  x. 
sum_ j  e.  ( 1 ... N ) ( ( ( E `
 j )  -  ( G `  j ) ) ^ 2 ) )  -  sum_ j  e.  ( 1 ... N
) ( ( ( E `  j )  -  ( H `  j ) ) ^
2 ) ) )
8068, 79oveq12d 6668 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  (
( 1  -  t
)  x.  ( ( t  x.  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( C `  j ) ) ^
2 ) )  -  sum_ j  e.  ( 1 ... N ) ( ( ( A `  j )  -  ( D `  j )
) ^ 2 ) ) )  =  ( ( 1  -  s
)  x.  ( ( s  x.  sum_ j  e.  ( 1 ... N
) ( ( ( E `  j )  -  ( G `  j ) ) ^
2 ) )  -  sum_ j  e.  ( 1 ... N ) ( ( ( E `  j )  -  ( H `  j )
) ^ 2 ) ) ) )
8152, 80oveq12d 6668 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  ( sum_ j  e.  ( 1 ... N ) ( ( ( B `  j )  -  ( D `  j )
) ^ 2 )  +  ( ( 1  -  t )  x.  ( ( t  x. 
sum_ j  e.  ( 1 ... N ) ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) )  -  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( D `  j ) ) ^
2 ) ) ) )  =  ( sum_ j  e.  ( 1 ... N ) ( ( ( F `  j )  -  ( H `  j )
) ^ 2 )  +  ( ( 1  -  s )  x.  ( ( s  x. 
sum_ j  e.  ( 1 ... N ) ( ( ( E `
 j )  -  ( G `  j ) ) ^ 2 ) )  -  sum_ j  e.  ( 1 ... N
) ( ( ( E `  j )  -  ( H `  j ) ) ^
2 ) ) ) ) )
8233, 34jca 554 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N
) ) )
83 simp22 1095 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N
) )
8482, 35, 83jca32 558 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )
8584adantr 481 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  (
( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )
86 simp1ll 1124 . . . . . . . . . . 11  |-  ( ( ( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) )  ->  t  e.  ( 0 [,] 1
) )
8786adantl 482 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  t  e.  ( 0 [,] 1
) )
88 ax5seglem9 25817 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( ( A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) ) ) )  /\  ( t  e.  ( 0 [,] 1
)  /\  A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) ) ) )  ->  (
t  x.  sum_ j  e.  ( 1 ... N
) ( ( ( C `  j )  -  ( D `  j ) ) ^
2 ) )  =  ( sum_ j  e.  ( 1 ... N ) ( ( ( B `
 j )  -  ( D `  j ) ) ^ 2 )  +  ( ( 1  -  t )  x.  ( ( t  x. 
sum_ j  e.  ( 1 ... N ) ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) )  -  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( D `  j ) ) ^
2 ) ) ) ) )
8932, 85, 87, 40, 88syl22anc 1327 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  (
t  x.  sum_ j  e.  ( 1 ... N
) ( ( ( C `  j )  -  ( D `  j ) ) ^
2 ) )  =  ( sum_ j  e.  ( 1 ... N ) ( ( ( B `
 j )  -  ( D `  j ) ) ^ 2 )  +  ( ( 1  -  t )  x.  ( ( t  x. 
sum_ j  e.  ( 1 ... N ) ( ( ( A `
 j )  -  ( C `  j ) ) ^ 2 ) )  -  sum_ j  e.  ( 1 ... N
) ( ( ( A `  j )  -  ( D `  j ) ) ^
2 ) ) ) ) )
90 3simpc 1060 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( EE
`  N )  /\  G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
) )  ->  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
) ) )
91903ad2ant3 1084 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
) ) )
9253, 54, 91jca31 557 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
) ) ) )
9392adantr 481 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  (
( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
) ) ) )
94 simp1lr 1125 . . . . . . . . . . 11  |-  ( ( ( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) )  ->  s  e.  ( 0 [,] 1
) )
9594adantl 482 . . . . . . . . . 10  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  s  e.  ( 0 [,] 1
) )
96 ax5seglem9 25817 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( ( E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
) ) ) )  /\  ( s  e.  ( 0 [,] 1
)  /\  A. i  e.  ( 1 ... N
) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i )
)  +  ( s  x.  ( G `  i ) ) ) ) )  ->  (
s  x.  sum_ j  e.  ( 1 ... N
) ( ( ( G `  j )  -  ( H `  j ) ) ^
2 ) )  =  ( sum_ j  e.  ( 1 ... N ) ( ( ( F `
 j )  -  ( H `  j ) ) ^ 2 )  +  ( ( 1  -  s )  x.  ( ( s  x. 
sum_ j  e.  ( 1 ... N ) ( ( ( E `
 j )  -  ( G `  j ) ) ^ 2 ) )  -  sum_ j  e.  ( 1 ... N
) ( ( ( E `  j )  -  ( H `  j ) ) ^
2 ) ) ) ) )
9732, 93, 95, 62, 96syl22anc 1327 . . . . . . . . 9  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  (
s  x.  sum_ j  e.  ( 1 ... N
) ( ( ( G `  j )  -  ( H `  j ) ) ^
2 ) )  =  ( sum_ j  e.  ( 1 ... N ) ( ( ( F `
 j )  -  ( H `  j ) ) ^ 2 )  +  ( ( 1  -  s )  x.  ( ( s  x. 
sum_ j  e.  ( 1 ... N ) ( ( ( E `
 j )  -  ( G `  j ) ) ^ 2 ) )  -  sum_ j  e.  ( 1 ... N
) ( ( ( E `  j )  -  ( H `  j ) ) ^
2 ) ) ) ) )
9881, 89, 973eqtr4d 2666 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  (
t  x.  sum_ j  e.  ( 1 ... N
) ( ( ( C `  j )  -  ( D `  j ) ) ^
2 ) )  =  ( s  x.  sum_ j  e.  ( 1 ... N ) ( ( ( G `  j )  -  ( H `  j )
) ^ 2 ) ) )
9967oveq1d 6665 . . . . . . . 8  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  (
t  x.  sum_ j  e.  ( 1 ... N
) ( ( ( G `  j )  -  ( H `  j ) ) ^
2 ) )  =  ( s  x.  sum_ j  e.  ( 1 ... N ) ( ( ( G `  j )  -  ( H `  j )
) ^ 2 ) ) )
10098, 99eqtr4d 2659 . . . . . . 7  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  (
t  x.  sum_ j  e.  ( 1 ... N
) ( ( ( C `  j )  -  ( D `  j ) ) ^
2 ) )  =  ( t  x.  sum_ j  e.  ( 1 ... N ) ( ( ( G `  j )  -  ( H `  j )
) ^ 2 ) ) )
10112, 23, 31, 44, 100mulcanad 10662 . . . . . 6  |-  ( ( ( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N
)  /\  E  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  /\  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( C `  j )  -  ( D `  j ) ) ^
2 )  =  sum_ j  e.  ( 1 ... N ) ( ( ( G `  j )  -  ( H `  j )
) ^ 2 ) )
1021013exp2 1285 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( ( t  e.  ( 0 [,] 1
)  /\  s  e.  ( 0 [,] 1
) )  /\  ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) ) )  ->  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  ->  ( ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. )  ->  sum_ j  e.  ( 1 ... N ) ( ( ( C `
 j )  -  ( D `  j ) ) ^ 2 )  =  sum_ j  e.  ( 1 ... N ) ( ( ( G `
 j )  -  ( H `  j ) ) ^ 2 ) ) ) ) )
103102expd 452 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( t  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( A  =/=  B  /\  ( A. i  e.  (
1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) )  ->  ( ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  ->  ( ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. )  ->  sum_ j  e.  ( 1 ... N ) ( ( ( C `
 j )  -  ( D `  j ) ) ^ 2 )  =  sum_ j  e.  ( 1 ... N ) ( ( ( G `
 j )  -  ( H `  j ) ) ^ 2 ) ) ) ) ) )
104103rexlimdvv 3037 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( E. t  e.  (
0 [,] 1 ) E. s  e.  ( 0 [,] 1 ) ( A  =/=  B  /\  ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) )  /\  A. i  e.  ( 1 ... N
) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i )
)  +  ( s  x.  ( G `  i ) ) ) ) )  ->  (
( <. A ,  B >.Cgr
<. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  ->  ( ( <. A ,  D >.Cgr <. E ,  H >.  /\ 
<. B ,  D >.Cgr <. F ,  H >. )  ->  sum_ j  e.  ( 1 ... N ) ( ( ( C `
 j )  -  ( D `  j ) ) ^ 2 )  =  sum_ j  e.  ( 1 ... N ) ( ( ( G `
 j )  -  ( H `  j ) ) ^ 2 ) ) ) ) )
1051043impd 1281 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( E. t  e.  ( 0 [,] 1
) E. s  e.  ( 0 [,] 1
) ( A  =/= 
B  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\  <. B ,  C >.Cgr
<. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) )  ->  sum_ j  e.  ( 1 ... N
) ( ( ( C `  j )  -  ( D `  j ) ) ^
2 )  =  sum_ j  e.  ( 1 ... N ) ( ( ( G `  j )  -  ( H `  j )
) ^ 2 ) ) )
106 brbtwn 25779 . . . . . . . 8  |-  ( ( B  e.  ( EE
`  N )  /\  A  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  ->  ( B  Btwn  <. A ,  C >.  <->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) ) ) )
10734, 33, 35, 106syl3anc 1326 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( B  Btwn  <. A ,  C >.  <->  E. t  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) ) ) )
108 brbtwn 25779 . . . . . . . 8  |-  ( ( F  e.  ( EE
`  N )  /\  E  e.  ( EE `  N )  /\  G  e.  ( EE `  N
) )  ->  ( F  Btwn  <. E ,  G >.  <->  E. s  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( F `  i
)  =  ( ( ( 1  -  s
)  x.  ( E `
 i ) )  +  ( s  x.  ( G `  i
) ) ) ) )
10954, 53, 55, 108syl3anc 1326 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( F  Btwn  <. E ,  G >.  <->  E. s  e.  (
0 [,] 1 ) A. i  e.  ( 1 ... N ) ( F `  i
)  =  ( ( ( 1  -  s
)  x.  ( E `
 i ) )  +  ( s  x.  ( G `  i
) ) ) ) )
110107, 109anbi12d 747 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. A ,  C >.  /\  F  Btwn  <. E ,  G >. )  <-> 
( E. t  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) )  /\  E. s  e.  ( 0 [,] 1
) A. i  e.  ( 1 ... N
) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i )
)  +  ( s  x.  ( G `  i ) ) ) ) ) )
111 reeanv 3107 . . . . . 6  |-  ( E. t  e.  ( 0 [,] 1 ) E. s  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) )  <->  ( E. t  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  E. s  e.  ( 0 [,] 1 ) A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) )
112110, 111syl6bbr 278 . . . . 5  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( B  Btwn  <. A ,  C >.  /\  F  Btwn  <. E ,  G >. )  <->  E. t  e.  (
0 [,] 1 ) E. s  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) )  /\  A. i  e.  ( 1 ... N
) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i )
)  +  ( s  x.  ( G `  i ) ) ) ) ) )
113112anbi2d 740 . . . 4  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( A  =/=  B  /\  ( B  Btwn  <. A ,  C >.  /\  F  Btwn  <. E ,  G >. ) )  <->  ( A  =/= 
B  /\  E. t  e.  ( 0 [,] 1
) E. s  e.  ( 0 [,] 1
) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) )  /\  A. i  e.  ( 1 ... N
) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i )
)  +  ( s  x.  ( G `  i ) ) ) ) ) ) )
114 3anass 1042 . . . 4  |-  ( ( A  =/=  B  /\  B  Btwn  <. A ,  C >.  /\  F  Btwn  <. E ,  G >. )  <->  ( A  =/=  B  /\  ( B 
Btwn  <. A ,  C >.  /\  F  Btwn  <. E ,  G >. ) ) )
115 r19.42v 3092 . . . . . 6  |-  ( E. s  e.  ( 0 [,] 1 ) ( A  =/=  B  /\  ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) )  <-> 
( A  =/=  B  /\  E. s  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) )  /\  A. i  e.  ( 1 ... N
) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i )
)  +  ( s  x.  ( G `  i ) ) ) ) ) )
116115rexbii 3041 . . . . 5  |-  ( E. t  e.  ( 0 [,] 1 ) E. s  e.  ( 0 [,] 1 ) ( A  =/=  B  /\  ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) )  <->  E. t  e.  (
0 [,] 1 ) ( A  =/=  B  /\  E. s  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) )  /\  A. i  e.  ( 1 ... N
) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i )
)  +  ( s  x.  ( G `  i ) ) ) ) ) )
117 r19.42v 3092 . . . . 5  |-  ( E. t  e.  ( 0 [,] 1 ) ( A  =/=  B  /\  E. s  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) )  <-> 
( A  =/=  B  /\  E. t  e.  ( 0 [,] 1 ) E. s  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) )  /\  A. i  e.  ( 1 ... N
) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i )
)  +  ( s  x.  ( G `  i ) ) ) ) ) )
118116, 117bitri 264 . . . 4  |-  ( E. t  e.  ( 0 [,] 1 ) E. s  e.  ( 0 [,] 1 ) ( A  =/=  B  /\  ( A. i  e.  ( 1 ... N ) ( B `  i
)  =  ( ( ( 1  -  t
)  x.  ( A `
 i ) )  +  ( t  x.  ( C `  i
) ) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) )  <-> 
( A  =/=  B  /\  E. t  e.  ( 0 [,] 1 ) E. s  e.  ( 0 [,] 1 ) ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) )  /\  A. i  e.  ( 1 ... N
) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i )
)  +  ( s  x.  ( G `  i ) ) ) ) ) )
119113, 114, 1183bitr4g 303 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( A  =/=  B  /\  B  Btwn  <. A ,  C >.  /\  F  Btwn  <. E ,  G >. )  <->  E. t  e.  (
0 [,] 1 ) E. s  e.  ( 0 [,] 1 ) ( A  =/=  B  /\  ( A. i  e.  ( 1 ... N
) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i )
)  +  ( t  x.  ( C `  i ) ) )  /\  A. i  e.  ( 1 ... N
) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i )
)  +  ( s  x.  ( G `  i ) ) ) ) ) ) )
1201193anbi1d 1403 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( ( A  =/= 
B  /\  B  Btwn  <. A ,  C >.  /\  F  Btwn  <. E ,  G >. )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) )  <->  ( E. t  e.  ( 0 [,] 1
) E. s  e.  ( 0 [,] 1
) ( A  =/= 
B  /\  ( A. i  e.  ( 1 ... N ) ( B `  i )  =  ( ( ( 1  -  t )  x.  ( A `  i ) )  +  ( t  x.  ( C `  i )
) )  /\  A. i  e.  ( 1 ... N ) ( F `  i )  =  ( ( ( 1  -  s )  x.  ( E `  i ) )  +  ( s  x.  ( G `  i )
) ) ) )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\  <. B ,  C >.Cgr
<. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) ) ) )
121 simp33 1099 . . 3  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  H  e.  ( EE `  N
) )
122 brcgr 25780 . . 3  |-  ( ( ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) )  /\  ( G  e.  ( EE `  N )  /\  H  e.  ( EE `  N
) ) )  -> 
( <. C ,  D >.Cgr
<. G ,  H >.  <->  sum_ j  e.  ( 1 ... N ) ( ( ( C `  j )  -  ( D `  j )
) ^ 2 )  =  sum_ j  e.  ( 1 ... N ) ( ( ( G `
 j )  -  ( H `  j ) ) ^ 2 ) ) )
12335, 83, 55, 121, 122syl22anc 1327 . 2  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  ( <. C ,  D >.Cgr <. G ,  H >.  <->  sum_ j  e.  ( 1 ... N ) ( ( ( C `  j )  -  ( D `  j )
) ^ 2 )  =  sum_ j  e.  ( 1 ... N ) ( ( ( G `
 j )  -  ( H `  j ) ) ^ 2 ) ) )
124105, 120, 1233imtr4d 283 1  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) )  /\  ( F  e.  ( EE `  N )  /\  G  e.  ( EE `  N
)  /\  H  e.  ( EE `  N ) ) )  ->  (
( ( A  =/= 
B  /\  B  Btwn  <. A ,  C >.  /\  F  Btwn  <. E ,  G >. )  /\  ( <. A ,  B >.Cgr <. E ,  F >.  /\ 
<. B ,  C >.Cgr <. F ,  G >. )  /\  ( <. A ,  D >.Cgr <. E ,  H >.  /\  <. B ,  D >.Cgr
<. F ,  H >. ) )  ->  <. C ,  D >.Cgr <. G ,  H >. ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    <_ cle 10075    - cmin 10266   NNcn 11020   2c2 11070   [,]cicc 12178   ...cfz 12326   ^cexp 12860   sum_csu 14416   EEcee 25768    Btwn cbtwn 25769  Cgrccgr 25770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-ee 25771  df-btwn 25772  df-cgr 25773
This theorem is referenced by:  eengtrkg  25865  5segofs  32113
  Copyright terms: Public domain W3C validator